Abstract:
A multilayer ceramic capacitor includes: a ceramic body including dielectric layers and first and second internal electrodes disposed to face each other with each of the dielectric layers interposed therebetween; and first and second external electrodes disposed on external surfaces of the ceramic body and electrically connected to the first and second internal electrode, respectively, wherein the dielectric layer includes dielectric grains having a core-shell structure including a core and a shell, and a domain wall is disposed in the shell.
Abstract:
A multilayer ceramic electronic component includes a plurality of dielectric layers; and internal electrodes disposed on the dielectric layers and containing an additive. The additive contains lithium (Li) and a dielectric material.
Abstract:
There are provided a composite perovskite powder, a preparation method thereof, and a paste composition for an internal electrode having the same, the composite perovskite powder capable of preventing ions from being eluted from an aqueous system at the time of synthesis while being ultra-atomized, such that when the composite perovskite powder is used as an inhibitor powder for an internal electrode, sintering properties of the internal electrode may be deteriorated, and sintering properties of a dielectric material may be increased; accordingly, connectivity of the internal electrode may be improved, and permittivity and reliability of a multilayer ceramic capacitor (MLCC) may be increased.
Abstract:
A multilayer ceramic electronic component includes a ceramic body in which dielectric layers and internal electrodes are alternately stacked. The dielectric layers contain at least one dielectric grain having a ratio of a long axis to a short axis that is 3.5 or more. The internal electrodes contain a ceramic component containing a grain growth adjusting ingredient for dielectric grains. Each dielectric layer includes interfacial portions adjacent to the internal electrodes and a central portion disposed between the interfacial portions, and concentrations of the grain growth adjusting ingredient in the interfacial portions and the central portion are different from each other.
Abstract:
A multilayer ceramic electronic component and a method of manufacturing the same are provided. The multilayer ceramic electronic component includes: a ceramic body including dielectric layers; and internal electrodes disposed on the dielectric layers within the ceramic body and containing a ceramic material trapped therein. The ceramic material is a dielectric material doped with an additive.
Abstract:
A dielectric composition is a barium titanate-based dielectric composition and includes a barium titanate particle including a major axis, a minor axis disposed on the same plane as the major axis, and a vertical axis perpendicular to both the major axis and the minor axis, and a ratio of a length of the major axis to a length of the vertical axis is within a range from 1.5:1 to 30:1.
Abstract:
A conductive paste for an external electrode, a multilayer ceramic electronic component using the same, and a manufacturing method of a multilayer ceramic electronic component are provided. The conductive paste for an external electrode includes first conductive particles containing a metal, second conductive particles formed of ceramic particles coated with silver (Ag), and a thermosetting resin.
Abstract:
A multilayer ceramic capacitor includes: a ceramic body including dielectric layers and first and second internal electrodes disposed to face each other with each of the dielectric layers interposed therebetween; and first and second external electrodes disposed on external surfaces of the ceramic body and electrically connected to the first and second internal electrode, respectively, wherein the dielectric layer includes dielectric grains having a core-shell structure including a core and a shell, and a domain wall is disposed in the shell.
Abstract:
There is provided a multilayer ceramic electronic component including: a ceramic body in which internal electrodes and dielectric layers containing a barium titanate-based compound containing calcium (Ca) are alternately stacked; and external electrodes disposed on outer surfaces of the ceramic body and electrically connected to the internal electrodes. The dielectric layer includes interfacial portions adjacent to the internal electrodes and a central portion disposed between the interfacial portions, the interfacial portion having a calcium (Ca) concentration higher than that of the central portion.
Abstract:
There are provided a method of manufacturing perovskite powder, and perovskite powder and a multilayer ceramic electronic component manufactured thereof. The manufacturing method includes: washing metal oxide hydrate to remove impurities therefrom; adding pure water and an acid or a base to the metal oxide hydrate to prepare a metal oxide sol; mixing the metal oxide sol with a metal salt to form perovskite particle nuclei; and conducting grain growth of the perovskite particle nuclei by hydrothermal treatment to produce perovskite powder. The method of manufacturing perovskite powder and the perovskite powder manufactured by the same have advantages such as excellent crystallinity, reduced generation of fine powder, and favorable dispersion properties.