Abstract:
A capacitor component includes a body including a plurality of dielectric layers having a stacked structure, and first and second internal electrodes which are alternately disposed while having the dielectric layer interposed therebetween; and first and second external electrodes formed on an outer surface of the body, and connected to the first and second internal electrodes, respectively, wherein the body includes an active region having capacity by the first and second internal electrodes and a cover region located above and below the active region, the cover region includes a protection pattern of a metal material connected to the first external electrode or the second external electrode, and the protection pattern does not overlap with the internal electrode having a different polarity among the first and second internal electrodes in a thickness direction of the body.
Abstract:
A multilayer ceramic electronic component includes a capacitance forming part in which a plurality of first and second dielectric layers are alternately disposed. The capacitance forming part includes first and second internal electrodes disposed to be spaced apart from each other. First floating electrodes are disposed to be spaced apart from the first and second internal electrodes on the plurality of first dielectric layers, and second floating electrodes are disposed on the plurality of second dielectric layers and partially overlap the first and second internal electrodes. The ceramic body further includes a protective part having a plurality of third dielectric layers on which first and second dummy electrodes are disposed and a plurality of third dummy electrodes are disposed between the first and second dummy electrodes.
Abstract:
A multilayer ceramic capacitor includes a body including a first dielectric layer on which a first internal electrode, a first coupling portion, and a second internal electrode are disposed, a second dielectric layer on which a third internal electrode, a second coupling portion, and a fourth internal electrode are disposed, and a third dielectric layer on which a fifth internal electrode or a sixth internal electrode is disposed, and first and second external electrodes connected to the first to sixth internal electrodes, and disposed on both surfaces of the body in the first direction. The first to third dielectric layers are sequentially stacked.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body including a dielectric layer and first and second internal electrodes alternately exposed to first and second outer surfaces with the dielectric layer interposed therebetween; and first and second external electrodes disposed on the first and second outer surfaces of the ceramic body so as to be connected to the first and second internal electrodes, respectively. The first internal electrode has a plurality of first ends connected to the first external electrode and a first recessed region positioned between the plurality of first ends, the first recessed region at least partially filled with a dielectric material. The second internal electrode has a plurality of second ends connected to the second external electrode and a second recessed region positioned between the plurality of second ends, the second recessed region at least partially filled with the dielectric material.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body including a dielectric layer and first and second internal electrodes alternately exposed to first and second outer surfaces with the dielectric layer interposed therebetween; and first and second external electrodes disposed on the first and second outer surfaces of the ceramic body so as to be connected to the first and second internal electrodes, respectively. The first internal electrode has a plurality of first ends connected to the first external electrode and a first recessed region positioned between the plurality of first ends, the first recessed region at least partially filled with a dielectric material. The second internal electrode has a plurality of second ends connected to the second external electrode and a second recessed region positioned between the plurality of second ends, the second recessed region at least partially filled with the dielectric material.
Abstract:
A laminated chip electronic component includes: a ceramic body including internal electrodes and dielectric layers; external electrodes formed to cover both end portions of the ceramic body in a length direction; an active layer in which the internal electrodes are disposed in an opposing manner, while having the dielectric layers interposed therebetween, to form capacitance; and upper and lower cover layers formed on upper and lower portions of the active layer in a thickness direction, the lower cover layer having a thickness greater than that of the upper cover layer.
Abstract:
A multilayer ceramic capacitor includes a ceramic body including a plurality of dielectric layers stacked therein in a stacking direction; first and second external electrodes disposed externally on the ceramic body; first and second internal electrodes alternately stacked with the plurality of dielectric layers, forming an internal active layer of the ceramic body, and respectively connected to the first and second external electrodes; a dummy layer, including a conductive material and having a mesh shape, disposed in at least one of an upper cover layer or a lower cover layer respectively disposed above or below the internal active layer of the ceramic body in the stacking direction.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer, and first and second internal electrodes configured to be layered in a third direction with the dielectric layer interposed therebetween and having first and second connection portions, respectively, and including first, second, third, fourth, fifth and sixth surfaces; a first external electrode disposed on the fifth surface of the body; and a second external electrode disposed on the fifth surface of the body. The first internal electrode is exposed to the third surface and the fifth surface of the body through the first connection portion, and the second internal electrode is exposed to the fourth surface and the fifth surface of the body through the second connection portion.
Abstract:
A capacitor component includes a body including a plurality of dielectric layers having a stacked structure, and first and second internal electrodes which are alternately disposed while having the dielectric layer interposed therebetween; and first and second external electrodes formed on an outer surface of the body, and connected to the first and second internal electrodes, respectively, wherein the body includes an active region having capacity by the first and second internal electrodes and a cover region located above and below the active region, the cover region includes a protection pattern of a metal material connected to the first external electrode or the second external electrode, and the protection pattern does not overlap with the internal electrode having a different polarity among the first and second internal electrodes in a thickness direction of the body.
Abstract:
A chip component includes: a ceramic body including a capacitance forming part in which first and second dielectric layers are alternately disposed; and external electrodes disposed on both end surfaces of the ceramic body, wherein the capacitance forming part includes first and second internal electrodes spaced apart from each other on the first dielectric layers and exposed to the end surfaces of the ceramic body to thereby be connected to the external electrodes; and floating electrodes disposed on the second dielectric layers and overlapped with portions of the first and second internal electrodes, the ceramic body includes protective parts disposed between upper and lower surfaces thereof and the capacitance forming part and having third dielectric layers on which first and second dummy electrodes exposed to the end surfaces of the ceramic body are disposed, and the protective parts include third dummy electrodes disposed between the first and second dummy electrodes.