Abstract:
According to an embodiment of the present disclosure, an electronic device may comprise a housing including a first surface facing in a first direction and a second surface facing in a second direction opposite the first direction, the housing including a transparent cover that comprises at least part of the first surface, a display disposed between the first surface and the second surface of the housing and configured to display information through the transparent cover to an outside, an illumination part comprising light emitting circuitry disposed at an inner side of an end of the first surface of the housing and configured to emit light to the transparent cover, an optical coupler disposed between the illumination part and the transparent cover and configured to reflect light from the illumination part to the transparent cover, and a biometric sensor disposed under the transparent cover and the display. In an electronic device including a biometric sensor according to an embodiment of the present disclosure, a light source is put to use in sensing the user's fingerprint information using a biometric sensor positioned in a display activation area, thereby providing better performance and an improved outer appearance.
Abstract:
An electronic device is provided. The electronic device includes a housing including a radiating conductor forming a portion of a side wall thereof, an electronic component disposed adjacent to the radiating conductor, a circuit board including an integrated circuit (IC) chip, and a shielding member attached to the circuit board and surrounding the IC chip.
Abstract:
An apparatus and a method for controlling power in an electronic device are provided. The apparatus includes a switching unit configured to selectively supply a load with one of a first power, which is continuously generated, and a second power, which is discontinuously generated, during operation of the electronic device, and a control unit configured to control switching of the switching unit such that the second power is supplied to the electronic device after a delay of a predetermined time upon generation of the second power.
Abstract:
A method and apparatus for controlling battery charging in an electronic device are provided. The electronic device may include a charging module, a connector, and one or more processors. Upon detecting charging by a power source, the one or more processors control the charging module to perform the charging of a battery cell by a first charging current through a first port of the connector. The one or more processors detect whether a voltage is applied through a second port of the connector, and if so, the one or more processors control the charging module to perform the charging of the battery cell using a second charging current through the first port and the second port of the connector.
Abstract:
A frequency-efficient antenna operation method is provided in a multiuser beamforming system. The method includes determining channel correlations and channel gain differences between channels using channel information received from multiple terminals, classifying the multiple terminals into at least one or more clusters using the channel correlations and channel gain differences, selecting a beamforming vector for each of the one or more clusters using the channel information of at least one or more terminals in the one or more clusters, allocating power to the terminals in each of the one or more clusters, and forming a beam based on the allocated power and the selected beamforming vector. According to the method, interference due to sharing space resources may be reduced and more efficient data communication may be achieved.