Abstract:
A carbon dioxide adsorbent may include a chabazite zeolite containing an alkali metal ion or an alkaline earth metal ion. The chabazite zeolite may have a Si/Al mole ratio of about 1 to about 9.9. The carbon dioxide adsorbent may be included in a carbon dioxide capture module. The carbon dioxide adsorbent may also be used in a method of separating carbon dioxide.
Abstract:
A carbon dioxide adsorbent may include a double salt having a first metal salt and a second metal salt. The first metal salt may include a first metal selected from Ca, Sr, and Ba. The second metal salt may include a second metal selected from Li, Na, K, Rb, and Cs. The present disclosure also discloses a process for preparing the carbon dioxide adsorbent and a method of separating carbon dioxide using the same.
Abstract:
An adsorbent for carbon dioxide may include a composite metal oxide including a divalent first metal (M1), a trivalent second metal (M2), and at least one polyoxometalate (POM) ion selected from an anion represented by a first formula (e.g., Chemical Formula 1) and an anion represented by a second formula (e.g., Chemical Formula 2). A capture module for carbon dioxide may include the adsorbent.
Abstract:
A carbon dioxide adsorbent includes a porous metal oxide represented by Chemical Formula 1, the porous metal oxide having a specific surface area of greater than or equal to about 30 m2/g, and an average pore size of greater than or equal to about 2 nm.
Abstract:
A carbon dioxide adsorbent may include an amorphous mixed metal oxide including a divalent first metal (M1), a trivalent second metal (M2) different from the divalent first metal (M1), an alkali metal (M3), and an element (A) with an electronegativity of about 2.0 to about 4.0. The alkali metal (M3) may be present in the form of a crystalline halide, an oxide, or a combination thereof. The carbon dioxide adsorbent may also be used in a method of separating carbon dioxide.
Abstract:
An electrochemical cell includes: a positive current collector in which an injection part, an ejection part and a passage are defined, where air including an oxygen is injected through the injection part, an exhaust gas is ejected though the ejection part ejecting, and the passage defines a single path which connects the injection part and the ejection part; and a unit cell disposed to be adjacent to the positive current collector. The unit cell includes a positive electrode layer, an active material of which is the oxygen gas, a negative electrode metal layer disposed on an opposite to the positive current collector with respect to the positive electrode layer, and an electrolyte membrane interposed between the positive electrode layer and the negative electrode metal layer.
Abstract:
A carbon dioxide adsorbent may include a chabazite zeolite containing an alkali metal ion or alkaline earth metal ion. The chabazite zeolite may have a Si/Al mole ratio of about 1 to about 9.9 and mesopores. The carbon dioxide adsorbent may be included in a carbon dioxide capture module. The carbon dioxide adsorbent may also be used in a method of separating carbon dioxide.
Abstract:
A carbon dioxide adsorbent may include a complex oxide including barium and titanium, wherein the complex oxide has a perovskite crystalline structure and is represented by the general formula BaxTiyOz, and an atomic ratio of Ba/Ti ranges from about 0.95 to about 1.7. The carbon dioxide adsorbent may be included in a carbon dioxide capture module. The carbon dioxide adsorbent may also be used in a method of separating carbon dioxide.
Abstract:
An adsorbent for carbon dioxide may include a composite metal oxide including a divalent first metal (M1), a trivalent second metal (M2), and an element (A) with an electronegativity of about 2.0 to about 4.0. The composite metal oxide may have an amorphous structure. A method of manufacturing the adsorbent for carbon dioxide and a capture module for carbon dioxide including the adsorbent for carbon dioxide are also disclosed.