Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
A semiconductor device includes a plurality of lower electrodes on a substrate, with each of the lower electrodes extending in a height direction from the substrate and including sidewalls, the lower electrodes being spaced apart from each other in a first direction and in a second direction, a plurality of first supporting layer patterns contacting the sidewalls of the lower electrodes, the first supporting layer patterns extending in the first direction between ones of the lower electrodes adjacent in the second direction, a plurality of second supporting layer patterns contacting the sidewalls of the lower electrodes, the second supporting layer pattern extending in the second direction between ones of the lower electrodes adjacent in the first direction, the plurality of second supporting layer patterns being spaced apart from the plurality of first supporting layer patterns in the height direction.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
In a vertical-type semiconductor device, a method of manufacturing the same and a method of operating the same, the vertical-type semiconductor device includes a single-crystalline semiconductor pattern having a pillar shape provided on a substrate, a gate surrounding sidewalls of the single-crystalline semiconductor pattern and having an upper surface lower than an upper surface of the single-crystalline semiconductor pattern, a mask pattern formed on the upper surface of the gate, the mask pattern having an upper surface coplanar with the upper surface of the single-crystalline semiconductor pattern, a first impurity region in the substrate under the single-crystalline semiconductor pattern, and a second impurity region under the upper surface of the single-crystalline semiconductor pattern. The vertical-type pillar transistor formed in the single-crystalline semiconductor pattern may provide excellent electrical properties. The mask pattern is not provided on the upper surface of the single-crystalline semiconductor pattern in the second impurity region, to thereby reduce failures of processes.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
In a vertical-type semiconductor device, a method of manufacturing the same and a method of operating the same, the vertical-type semiconductor device includes a single-crystalline semiconductor pattern having a pillar shape provided on a substrate, a gate surrounding sidewalls of the single-crystalline semiconductor pattern and having an upper surface lower than an upper surface of the single-crystalline semiconductor pattern, a mask pattern formed on the upper surface of the gate, the mask pattern having an upper surface coplanar with the upper surface of the single-crystalline semiconductor pattern, a first impurity region in the substrate under the single-crystalline semiconductor pattern, and a second impurity region under the upper surface of the single-crystalline semiconductor pattern. The vertical-type pillar transistor formed in the single-crystalline semiconductor pattern may provide excellent electrical properties. The mask pattern is not provided on the upper surface of the single-crystalline semiconductor pattern in the second impurity region, to thereby reduce failures of processes.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.