Abstract:
A device for detecting a surface plasmon and polarization includes: a topological insulating layer formed on a substrate; first and second electrodes formed on the topological insulating layer; and a waveguide connected to the topological insulating layer between the first and second electrodes.
Abstract:
A nanostructure, an optical device including the nanostructure, and methods of manufacturing the nanostructure and the optical device. A method of manufacturing a nanostructure may include forming a block copolymer template layer and a precursor pattern of metal coupled to the block copolymer template layer on a graphene layer, and forming a metal nanopattern on the graphene layer by removing the block copolymer template layer and reducing the precursor pattern.
Abstract:
Provided are an optical switch and an optical logic device. The optical switch includes a plate having a nanometer-sized thickness, a first slit formed in the plate, through which a first light passes, a second slit formed in the plate, separately from the first slit, through which a second light selectively passes, a plurality of first grooves formed on a first side of the first slit, between the first slit and the second slit, and a plurality of second grooves formed on a second side of the first slit, opposite the first side. The first light and the second light may have a phase difference and a focusing of the first light is turned on/off by controlling the second light.
Abstract:
Provided are an optical device and a method of controlling propagation directions of light and a surface plasmon using the optical device. The optical device includes a light source, a substrate, and a metal layer that is disposed on the substrate, the metal layer includes at least two slots, and propagation directions of light and a surface plasmon may be controlled by using the light that is polarized in a direction parallel to a direction of a long length of any one of the at least two slots.
Abstract:
An optical interconnection for a stacked integrated circuit, is provided. The optical interconnection includes: an optical transmission unit disposed in a first layer and an optical receiving unit disposed in a second layer, different from the first layer, and spaced apart from the optical transmission unit by a predetermined gap. The optical transmission unit includes a first optical antenna that outputs light; the optical receiving unit includes a second optical antenna which receives light transmitted from the optical transmission unit. At least one of the first and second optical antennas includes a plurality of nanostructures configured to transmit or receive an optical signal.
Abstract:
An optical modulator includes a dielectric layer and a metal layer arranged on the dielectric layer. In the optical modulator, a first light of a first frequency and a second light of a second frequency that are incident upon the metal layer exit from the metal layer at different refractive angles due to surface plasmon generation.