摘要:
A security test logic system can include a non-transitory memory configured to store measurements from a measurement apparatus, the measurement outputs comprising indications of presence or absence of coincidences where particles are detected at more than one detector at substantially the same time, the detectors being at the end of different channels from a particle source and having substantially the same length. The system can include a processor configured to compute a test statistic from the stored measurements. The test statistic may express a Bell inequality, and the system can compare the test statistic with a threshold. The processor can be configured to generate and output a certificate certifying that the measurements are from a quantum system if the value of the computed test statistic passes the threshold.
摘要:
A system and method of operation embeds a three-dimensional structure in a topology of an analog processor, for example a quantum processor. The analog processor may include a plurality of qubits arranged in tiles or cells. A number of qubits and communicatively coupled as logical qubits, each logical qubit which span across a plurality of tiles or cells of the qubits. Communicatively coupling between qubits of any given logical qubit can be implemented via application or assignment of a first ferromagnetic coupling strength to each of a number of couplers that communicatively couple the respective qubits in the logical qubit. Other ferromagnetic coupling strengths can be applied or assigned to couplers that communicatively couple qubits that are not part of the logical qubit. The first ferromagnetic coupling strength may be substantially higher than the other ferromagnetic coupling strengths.
摘要:
There is provided an electrode structure for preventing cracks occurring in a metal electrode due to heating in a manufacturing process in the case of stacking an insulating resin and the metal electrode which are different in thermal expansion coefficient. An electrode for a semiconductor circuit, stacked on a substrate made of an insulating resin, has an electrode structure composed of a main electrode including a slit formed by cutting out a part thereof to prevent occurrence of a crack in a manufacturing process caused by a difference in thermal expansion coefficient from the substrate, and an auxiliary electrode that covers the slit in the main electrode. No slit is provided but a bridge is formed at a portion where the slit in the main electrode and the slit in the auxiliary electrode overlap with each other, thereby eliminating a gap portion where the electrode does not exist.
摘要:
The tunneling channel of a field effect transistor comprising a plurality of tunneling elements contacting a channel substrate. Applying a source-drain voltage of greater than a turn-on voltage produces a source-drain current of greater than about 10 pA. Applying a source-drain voltage of less than a turn-on voltage produces a source-drain current of less than about 10 pA. The turn-on voltage at room temperature is between about 0.1V and about 40V.
摘要:
Quantum dragon materials and devices have unit (total) transmission of electrons for a wide range of electron energies, even though the electrons do not undergo ballistic propagation, when connected optimally to at least two external leads. Quantum dragon materials and devices enable embodiments as quantum dragon electronic or optoelectronic devices, including field effect transistors (FETs), sensors, injectors for spin-polarized currents, wires having integral multiples of the conductance quantum, and wires with zero electrical resistance. Methods of devising such quantum dragon materials and devices are also disclosed.
摘要:
A nanodevice capable of controlling the state of electric charge of a metal nanoparticle is provided. The device includes: nanogap electrodes 5 including one electrode 5A and the other electrode 5B disposed so as to have a nanosize gap in between; a nanoparticle 7 placed between the nanogap electrodes 5; and a plurality of gate electrodes 9. At least one of the plurality of gate electrodes 9 is used as a floating gate electrode to control the state of electric charge of the nanoparticle 7, which achieves a multivalued memory and rewritable logical operation.
摘要:
Plasmonic graphene is fabricated using thermally assisted self-assembly of plasmonic nanostructure on graphene. Silver nanostructures were deposited on graphene as an example.
摘要:
Example methods and mechanisms are described herein for implementing and adiabatically operating a topological quantum computing (TQC) phase gate that complements the existing Clifford operations, and thereby allows universal quantum computation with Majorana systems. Further embodiments include a testing system for the phase gate that is feasible with Majorana zero modes and demonstrates violations of the CHSH-Bell inequality. Further, the design used for the testing of the inequality leads directly to a practical platforms for performing universal TQC with Majorana wires in which explicit braiding need never occur. Thus, certain embodiments of the disclosed technology involve three synergistically connected aspects of anyonic TQC the context of the currently active area of using MZMs for topological quantum computation): a practical phase gate for universal topological quantum computation using MZMs, a precise protocol (using CHSH inequality) for testing that the desired gate operation has been achieved, and bypassing the necessity of MZM braiding (and so avoiding, e.g., problems of nonadiabaticity in the braids).
摘要:
A device includes a housing, at least two qubits disposed in the housing and a resonator disposed in the housing and coupled to the at least two qubits, wherein the at least two qubits are maintained at a fixed frequency and are statically coupled to one another via the resonator, wherein energy levels |03> and |12> are closely aligned, wherein a tuned microwave signal applied to the qubit activates a two-qubit phase interaction.
摘要:
An electronic device for implementing digital functions comprising a first and a second electrode regions, separated by an interposing region comprising a dielectric region, is described. The first and the second electrode regions comprise at least one first electrode and at least one second electrode, respectively, configured to generate in the interposing region an electric field depending on an electric potential difference applied thereto. In the interposing region, a molecular layer is comprised, which is composed of a plurality of molecules, each being capable of assuming one or more states, in a controllable manner, depending on a sensed electric field. The dielectric region has a spatially variable dielectric profile, to determine a respective spatially variable field profile of the sensed electric field at the molecular layer.