Abstract:
A solar energy based continuous process and reactor system for the production of an alkene by dehydrogenation of the corresponding alkane is performed in a reactor which process comprises alternatingly performing a first mode and a second mode in the same reactor, wherein the first mode is a non-oxidative dehydrogenation wherein the non-oxidative dehydrogenation is performed by contacting the alkane with a suitable dehydrogenation catalyst at a temperature of at least 500° C. to produce the corresponding alkene and hydrogen and wherein the second mode is an oxidative dehydrogenation wherein the oxidative dehydrogenation is performed by contacting the alkane with a suitable dehydrogenation catalyst and an oxidation agent at a temperature from 300 to 500° C. to produce the corresponding alkene wherein the dehydrogenation catalyst for the oxidative dehydrogenation and the non-oxidative dehydrogenation are the same, wherein the heat for the first mode is provided by a solar energy source.
Abstract:
Co-extraction techniques for separating and purifying butadiene and isoprene from a C4 hydrocarbon mixture including butadiene and a C5 hydrocarbon mixture including isoprene are provided. In an exemplary embodiment, a system includes a dimerization heat exchanger, a C5 purification column; an extraction zone including a mainwasher column, a rectifier column and an afterwasher column; a distillation zone; a degassing zone; and an isoprene finishing column. The system can further include a C5 washer column, an absorption column, and a distillation column.
Abstract:
The invention relates to a reactor comprising a plasma source and a catalyst comprising a mesoporous support. The invention also relates to a process comprising feeding methane to said reactor in order to obtain one or more of ethene, hydrogen and carbon as well as downstream products derived from ethene thus obtained. The invention relates to a reactor comprising as reactor parts: a. a housing and in said housing; b. a plasma source; and c. a catalyst, wherein said catalyst comprises as catalyst parts: i) a mesoporous support; ii) a metal selected from the group Pd, Ni, Ag or at least two thereof, wherein the metal is carried by said mesoporous support; wherein at least a part of said plasma source is located in said housing upstream of said catalyst.
Abstract:
The invention relates to a reactor comprising a plasma source and a catalyst comprising a mesoporous support. The invention also relates to a process comprising feeding methane to said reactor in order to obtain one or more of ethene, hydrogen and carbon as well as downstream products derived from ethene thus obtained. The invention relates to a reactor comprising as reactor parts: a. a housing and in said housing; b. a plasma source; and c. a catalyst, wherein said catalyst comprises as catalyst parts: i) a mesoporous support; ii) a metal selected from the group Pd, Ni, Ag or at least two thereof, wherein the metal is carried by said mesoporous support; wherein at least a part of said plasma source is located in said housing upstream of said catalyst.
Abstract:
Systems and processes for generating polyethylene are provided. A process includes performing a first reaction with methane and oxygen to produce a first product; performing a second reaction with the first product to produce a second product; separating components from the second product; returning ethane from the second product and performing a reaction simultaneous to the first reaction; performing a third reaction to produce a third product including polyethylene and vented methane; and returning the vented methane to a feed to the first reaction.
Abstract:
Systems and processes for generating polyethylene are provided. A process includes performing a first reaction with methane and oxygen to produce a first product; performing a second reaction with the first product to produce a second product; separating components from the second product; returning ethane from the second product and performing a reaction simultaneous to the first reaction; performing a third reaction to produce a third product including polyethylene and vented methane; and returning the vented methane to a feed to the first reaction.
Abstract:
Co-extraction techniques for separating and purifying butadiene and isoprene from a C4 hydrocarbon mixture including butadiene and a C5 hydrocarbon mixture including isoprene are provided. In an exemplary embodiment, a system includes a dimerization heat exchanger, a C5 purification column; an extraction zone including a mainwasher column, a rectifier column and an afterwasher column; a distillation zone; a degassing zone; and an isoprene finishing column. The system can further include a C5 washer column, an absorption column, and a distillation column.