Abstract:
In a method for controlling a vehicle with a drive system comprising an output shaft of a combustion engine and a planetary gear with a first and a second electrical machine, connected via their rotors to the components of the planetary gear, the combustion engine is started while the vehicle is driven by ensuring that the rotor of the second electrical machine is connected with the output shaft of the combustion engine, and controlling such electrical machine's rotational speed towards the combustion engine's idling speed, whereupon fuel injection into the combustion engine is carried out to start the latter.
Abstract:
Disclosed is a method for control a vehicle with a drive system comprising an output shaft of a combustion engine and a planetary gear with a first and a second electrical machine, connected via their rotors to the components of the planetary gear, the vehicle is started by controlling the first electrical machine to achieve a torque thereof, so that the requested torque is transmitted to the planetary gear's output shaft, and controlling the second electrical machine to achieve a torque, so that the desired power to electrical auxiliary aggregates and/or loads in the vehicle, and/or electric energy storage means, if present in the vehicle, for exchange of electric energy with the first and second electrical machine is achieved.
Abstract:
In a method for controlling a vehicle with a drive system comprising a power unit configuration adapted to provide output for the vehicle's operation, and further comprising a planetary gear and a first and second electrical machine, connected to components in the planetary gear via their rotors, a locking means is moved from a locked position, in which two of the planetary gear's components are locked together, so that the three components of the planetary gear rotate with the same speed, to a release position, when the vehicle is driven with the locking means in a locked position, by carrying out the following method steps. The power unit configuration is controlled in order to achieve torque balance between the components that are locked together by the locking means, and such locking means are moved into a release position, when said torque balance prevails.
Abstract:
In a method for controlling a vehicle with a drive system comprising a power unit configuration adapted to provide power for the vehicle's operation, and further comprising a planetary gear and a first and second electrical machine, connected to components in the planetary gear via their rotors, a locking means is moved from a release position, in which the planetary gear's components are free to rotate independently of each other, to a locked position, in which two of the planetary gear's components are locked together, so that the three components in the planetary gear rotate with the same speed. The power unit configuration is controlled in order to achieve a synchronous, or substantially synchronous, rotational speed between the input and output shaft of the planetary gear, and the locking means are then moved to the locked position.
Abstract:
A drive system for a vehicle comprises an electrical machine, arranged between a combustion engine and an input shaft to a gearbox. The rotor of the electrical machine is connected with a component of a planetary gear, and the input shaft of the gearbox is connected with another component of such planetary gear. A first locking means may be moved between a locked position, in which the planetary gear's three components rotate at the same rotational speed, and a release position, in which the components are allowed to rotate at different rotational speeds. A second locking means is moveable between a locked position in which the output shaft of the combustion engine is locked together with a component in the planetary gear, and a release position, in which the combustion engine's output shaft is decoupled from such a component.
Abstract:
A drive system for a vehicle comprises two electrical machines arranged between a combustion engine and an input shaft to a gearbox. The first electrical machine rotor is connected with a planetary gear component, and the input shaft of the gearbox is connected with another planetary gear component. The second electrical machine rotor is connected via a transmission with the output shaft of the combustion engine, which is connected with another planetary gear component. A first locking means may be moved between a locked position, wherein the planetary gear's components rotate at the same rotational speed, and a release position wherein the components rotate at different rotational speeds. A second locking means may be moved between a locked position, and a release position wherein the output shaft of the combustion engine is locked in the locked position and disconnected in the release position with said additional planetary gear component.
Abstract:
In a method for controlling a vehicle with a drive system comprising an output shaft in a combustion engine, a planetary gear and a first and second electrical machine connected to the planetary gear, the turning off of the combustion engine is achieved when the vehicle is driven with the combustion engine running, and a transition to operation of the vehicle with the electrical machines is achieved by ensuring that the second electrical machine's rotor is connected with the combustion engine's output shaft, that injection of fuel into the combustion engine is interrupted and that the second electrical machines rotational speed is controlled towards and until a standstill, whereupon the combustion engine's output shaft is disconnected from the second electrical machine and the planetary gear.
Abstract:
A gearbox having an input shaft (8) and an output shaft (20); a first epicyclic gear (10) connected to the input shaft (8); a second epicyclic gear (12) connected to the first epicyclic gear (10); a first electrical machine (14) connected to the first epicyclic gear (10); a second electrical machine (16) connected to the second epicyclic gear (12); a first main shaft (34) connected to the first epicyclic gear (10); a second main shaft (36) connected to the second epicyclic gear (12). A first coupling unit (56) disengagingly connects two rotatable components (22, 26, 50) at the first epicyclic gear (10), and a second coupling unit (58) disengagingly connects two rotatable components (28, 32, 51) at the second epicyclic gear (12), such that at least one of the rate of revolution and the torque at the first and the second main shafts (34, 36) can be influenced by controlling at least one of the first and the second coupling units (56, 58) to a condition of the rotatable components (22, 26, 50; 28, 32, 51) that is engaged or disengaged. Also a vehicle (1) having such a gearbox (2), a method to control such a gearbox (2), a computer program (P) to control a gearbox, and a computer program product comprising program code for an electronic control unit (48) or another computer (53) in order to implement the method.
Abstract:
Disclosed is a method for control of a vehicle with a drive system comprising a planetary gear and a first and second electrical machine, connected with their rotors to the components of the planetary gear, a braking of the vehicle towards stop occurs by way of a distribution of the desired braking torque between the first and the second electrical machines, and wherein such electrical machines are controlled to transmit a total torque to an output shaft of the planetary gear, which corresponds to the desired braking torque at least to one predetermined low speed limit, before the vehicle stops.
Abstract:
A drive system for a vehicle comprises two electrical machines arranged between a combustion engine and an input shaft to a gearbox. The first machine rotor is connected with a planetary gear component, and the input shaft of the gearbox with another planetary gear component. The second machine rotor is connected with the output shaft of the combustion engine, which is also connected with another planetary gear component. A first locking means movable between a locked position, wherein the planetary gear's three components rotate at the same rotational speed, and a release position, wherein the components rotate at different rotational speeds. A second locking means movable between a locked position, and a release position wherein the combustion engine's output shaft is locked to a stationary element in the locked position and disconnected in the release position to rotate with the second machine rotor and a planetary gear component.