Abstract:
Implementations disclosed herein provide a magnetoresistive (MR) sensor including a free layer comprising a first layer of CoFeB or CoFe/CoFeB and a second layer made of an alloyed layer including a ferromagnetic material and a refractory material. An implementation of the MR sensor further includes a cap layer adjacent to the second layer wherein the cap layer does not include any tantalum.
Abstract:
Implementations disclosed herein allow a signal detected by a magnetoresistive (MR) sensor to be improved by providing for one or more alloyed layers that each includes a ferromagnetic material and a refractory material. The alloyed layers are provided adjacent to a shield element or between soft magnetic layers of the sensor stack.
Abstract:
An apparatus disclosed herein includes a sensor stack including a first layer and an AFM stabilized bottom shield in proximity to the first layer, wherein the AFM stabilized bottom shield is magnetically coupled to the first layer. The apparatus reduces shield-to-shield spacing. The pinned layer of the bottom shield and a pinned layer of the sensor stack are stabilized using the AFM layer in the bottom shield. In one implementation, the bottom shield is made of the SAF structure, with the top layer of the structure adjacent to a pinned layer in the sensor stack.
Abstract:
A reader stack, such as for a magnetic storage device, the stack having a top synthetic antiferromagnetic (SAF) layer, a magnetic capping layer adjacent to the top SAF layer, an RKKY coupling layer adjacent to the magnetic capping layer opposite the top SAF layer, and a free layer adjacent to the RKKY coupling layer opposite the magnetic capping layer. Also included is a method for biasing a free layer in a reader stack by providing an exchange coupling between the free layer and a top synthetic antiferromagnetic (SAF) layer using a layer having RKKY coupling property positioned between the free layer and the top SAF layer and a magnetic capping layer between the SAF layer and the layer having RKKY coupling property.
Abstract:
A reader sensor having a dusting layer having a thickness less than 5 Angstroms between and in contact with the AFM layer and with the pinned layer. The dusting layer comprises a non-magnetic, electrically conducting material, such as ruthenium or iridium. The reader sensor has a free layer composed of a material free of nickel (Ni).
Abstract:
Implementations disclosed herein allow a signal detected by a magnetoresistive (MR) sensor to be improved by providing for one or more alloyed layers that each include a ferromagnetic material and a refractory material. The alloyed layers are provided adjacent to a shield element or between soft magnetic layers of the sensor stack.
Abstract:
Implementations disclosed herein allow a signal detected by a magnetoresistive (MR) sensor to be improved by providing for one or more alloyed layers that each includes a ferromagnetic material and a refractory material. The alloyed layers are provided adjacent to a shield element or between soft magnetic layers of the sensor stack.
Abstract:
A reader sensor that has a sensor stack with an AFM layer, a pinned stabilization layer, and a pinned layer, with the pinned stabilization layer closer to the AFM layer than to the pinned layer. The stack also includes a non-magnetic spacer layer between and in contact with the pinned stabilization layer and with the pinned layer. A magnetic coupling between the pinned stabilization layer and the pinned layer is no more than 50% of a magnetic coupling between the pinned stabilization layer and the AFM layer.
Abstract:
Implementations described and claimed herein provide a system comprising an external magnetic field generator, wherein the external field magnetic field generator is configured to rock an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure.
Abstract:
A reader stack, such as for a magnetic storage device, the stack having a top synthetic antiferromagnetic (SAF) layer, a magnetic capping layer adjacent to the top SAF layer, an RKKY coupling layer adjacent to the magnetic capping layer opposite the top SAF layer, and a free layer adjacent to the RKKY coupling layer opposite the magnetic capping layer. Also included is a method for biasing a free layer in a reader stack by providing an exchange coupling between the free layer and a top synthetic antiferromagnetic (SAF) layer using a layer having RKKY coupling property positioned between the free layer and the top SAF layer and a magnetic capping layer between the SAF layer and the layer having RKKY coupling property.