Abstract:
To provide a living body information detection apparatus and a living body information detection program capable of allowing a user to easily recognize information based on acquired living body information. A living body information detection apparatus includes an acquisition unit acquiring living body information obtained by detecting a living body signal and a control unit moving a display position of an image associated with the living body information on a display unit based on the magnitude of a value of the living body information obtained by the acquisition unit.
Abstract:
A display control unit performs switching between internal measurement information (for example, a lap time and others) and living-body information (for example, the number of heartbeats) indicated by a living-body signal for display on a display unit, based on whether or not a receiving unit acquires the living-body signal (for example, a heartbeat signal). Accordingly, a user can switch between displaying living-body information indicated by a living-body signal on a running watch (a display unit) and not displaying the living-body information indicated by the living-body signal on the running watch, depending on whether or not a chest strap is worn. Accordingly, the user does not need to perform a user operation for switching between the display of the internal measurement information and the display of the living-body information indicated by the living-body signal. Therefore, a user's laborious job of performing a display switching operation can be reduced.
Abstract:
There is provided an electronic timepiece that includes a solar panel which receives light to generate electric power, is operated with the electric power supplied from a secondary battery charged with output voltage of the solar panel, and includes a normal mode in which clock display is performed on a display unit and a power saving mode in which clock display on the display unit is stopped, based on illuminance detection of the solar panel, the electronic timepiece including: a mode control unit which switches cycles of the illuminance detection, by setting a cycle of the illuminance detection of the normal mode as a first cycle (for example, one minute), and a cycle of the illuminance detection of the power saving mode as a second cycle (for example, two seconds).
Abstract:
An electronic device includes an altitude measurement unit, an altitude change determination unit, and an elevating speed calculator. The altitude measurement unit measures an altitude, the altitude change determination unit determines whether a change state of the altitude measured by the altitude measurement unit is at least an ascending state or a descending state, and the elevating speed calculator calculates an average elevating speed in each change state determined by the altitude change determination unit based on the altitude measured by the altitude measurement unit. A data processing method in the electronic device and a data processing program executed by a computer of the electronic device may be realized.
Abstract:
An electronic apparatus includes a display unit, an altitude measurement unit that measures an altitude, key input means for receiving an operation input, and a CPU that starts recording of altitude information regarding an altitude measured by the altitude measurement unit at a predetermined time interval if the key input means receives an input for instructing starting of recording of an altitude, stops the recording of the altitude information if the key input means receives an input for instructing stopping of recording of an altitude, and displays the altitude information when the recording starts on the display unit if the key input means receives an input for instructing display of the altitude information in a state in which the altitude information is currently recorded.
Abstract:
According to an electronic timepiece of the invention, when a secondary battery is in an uncharged state and an oscillation circuit, a display unit, and a CPU are restored from an inoperable state to a normally charged state which makes the respective members to be operable, the electronic timepiece activates and oscillates the oscillation circuit when a secondary battery voltage reaches a predetermined first voltage (for example, 0.9 V), and cancels a reset of the CPU when the secondary battery voltage reaches a predetermined second voltage (for example, 1.2 V), and starts a time-of-day display on the display unit when the secondary battery voltage reaches a predetermined third voltage (2.2 V).
Abstract:
An electronic apparatus includes a determination unit that determines a reference heart rate used as a reference of a heart rate on the basis of a reference running speed used as a reference of exercise ability of a user.
Abstract:
To provide an electronic device, a data processing method and a data processing program capable of measuring a stable ascending/descending velocity on which the most recent ascending/descending state is reflected. The electronic device includes an altitude measurement unit measuring altitudes, an altitude change determination unit determining an altitude change state based on altitudes measured by the altitude measurement unit within a predetermined first time interval until a current time and an ascending/descending velocity calculation unit calculating an ascending/descending velocity based on altitudes measured by the altitude measurement unit within a second time interval until the current time, which is equal to the first time interval or longer than the first time interval.
Abstract:
An electronic device includes: a storage unit that stores unit information relating to a movement with respect to each of an elevating state and a horizontal movement state; an altitude measurement unit that measures an altitude; an altitude change determination unit that determines whether the movement is the elevating state or the horizontal movement state based on the altitude measured by the altitude measurement unit; and a movement distance calculator that reads the unit information corresponding to the state determined by the altitude change determination unit from the storage unit and calculates a movement distance based on the read unit information.