Abstract:
A highly reliable semiconductor device which uses an oxide semiconductor film for a backplane is provided. A semiconductor device includes a first conductive film, a first insulating film over the first conductive film, an oxide semiconductor film which is over the first insulating film and overlaps with the first conductive film, a second insulating film over the oxide semiconductor film, and a pair of second conductive films electrically connected to the oxide semiconductor film through an opening portion included in the second insulating film. The second insulating film overlaps with a region of the oxide insulating film in which a carrier flows between the pair of second conductive films and overlaps with end portions of the oxide semiconductor film.
Abstract:
A semiconductor device including a capacitor having an increased charge capacity without decreasing an aperture ratio is provided. The semiconductor device includes a transistor including a light-transmitting semiconductor film, a capacitor in which a dielectric film is provided between a pair of electrodes, and a pixel electrode electrically connected to the transistor. In the capacitor, a conductive film formed on the same surface as the light-transmitting semiconductor film in the transistor serves as one electrode, the pixel electrode serves as the other electrode, and a nitride insulating film and a second oxide insulating film which are provided between the light-transmitting semiconductor film and the pixel electrode serve as the a dielectric film.
Abstract:
A semiconductor device includes a transistor and a capacitor. The transistor includes a first conductive film; a first insulating film including a film containing hydrogen; a second insulating film including an oxide insulating film; an oxide semiconductor film including a first region and a pair of second regions; a pair of electrodes; a gate insulating film; and a second conductive film. The capacitor includes a lower electrode, an inter-electrode insulating film, and an upper electrode. The lower electrode contains the same material as the first conductive film. The inter-electrode insulating film includes a third insulating film containing the same material as the first insulating film and a fourth insulating film containing the same material as the gate insulating film. The upper electrode contains the same material as the second conductive film. A fifth insulating film containing hydrogen is provided over the transistor.
Abstract:
Provided is a semiconductor device including a resistor having an oxide semiconductor and a transistor having an oxide semiconductor over the same substrate. The semiconductor device includes the resistor and the transistor over the same substrate. The resistor includes at least a first oxide semiconductor layer. The transistor includes at least a second oxide semiconductor layer. The first oxide semiconductor layer and the second oxide semiconductor layer have the same composition, and the carrier density of the first oxide semiconductor layer is higher than the carrier density of the second oxide semiconductor layer. The carrier density of the first oxide semiconductor layer is higher than the carrier density of the second oxide semiconductor layer because the first oxide semiconductor layer is subjected to treatment for increasing oxygen vacancies and/or impurity concentration in the first oxide semiconductor layer.
Abstract:
A display device in which crosstalk is inhibited is provided. The display device includes a first insulating layer including a first region and a second region having a lower top surface level than the first region, a second insulating layer including a region overlapping with the first region, a light-emitting device including a region overlapping with the first region with the second insulating layer therebetween, a stack including a region overlapping with the second region, and a third insulating layer including a region overlapping with the stack; the second insulating layer includes a protruding portion overlapping with the second region; the light-emitting device includes at least a light-emitting layer, a first upper electrode over the light-emitting layer, and a second upper electrode over the first upper electrode; the second upper electrode includes a region overlapping with the third insulating layer; and the stack contains the same material as the light-emitting layer.
Abstract:
A display device in which a voltage drop is inhibited adequately is provided. The display device includes a first light-emitting device including a first light-emitting layer, a first charge-generation layer over the first light-emitting layer, and a second light-emitting layer over the first charge-generation layer; a first color filter overlapping with the first light-emitting device; a second light-emitting device including a third light-emitting layer, a second charge-generation layer over the third light-emitting layer, and a fourth light-emitting layer over the second charge-generation layer; a second color filter overlapping with the second light-emitting device; a common electrode included in the first light-emitting device and the second light-emitting device; and an auxiliary wiring electrically connected to the common electrode. The auxiliary wiring includes a first wiring layer and a second wiring layer, the second wiring layer is electrically connected to the first wiring layer through a contact hole of an insulating layer, and the second wiring layer has a lattice shape in a top view.
Abstract:
To provide a semiconductor device including a planar transistor having an oxide semiconductor and a capacitor. In a semiconductor device, a transistor includes an oxide semiconductor film, a gate insulating film over the oxide semiconductor film, a gate electrode over the gate insulating film, a second insulating film over the gate electrode, a third insulating film over the second insulating film, and a source and a drain electrodes over the third insulating film; the source and the drain electrodes are electrically connected to the oxide semiconductor film; a capacitor includes a first and a second conductive films and the second insulating film; the first conductive film and the gate electrode are provided over the same surface; the second conductive film and the source and the drain electrodes are provided over the same surface; and the second insulating film is provided between the first and the second conductive films.
Abstract:
To provide a semiconductor device including a planar transistor having an oxide semiconductor and a capacitor. In a semiconductor device, a transistor includes an oxide semiconductor film, a gate insulating film over the oxide semiconductor film, a gate electrode over the gate insulating film, a second insulating film over the gate electrode, a third insulating film over the second insulating film, and a source and a drain electrodes over the third insulating film; the source and the drain electrodes are electrically connected to the oxide semiconductor film; a capacitor includes a first and a second conductive films and the second insulating film; the first conductive film and the gate electrode are provided over the same surface; the second conductive film and the source and the drain electrodes are provided over the same surface; and the second insulting film is provided between the first and the second conductive films.
Abstract:
To provide a semiconductor device including a planar transistor having an oxide semiconductor and a capacitor. In a semiconductor device, a transistor includes an oxide semiconductor film, a gate insulating film over the oxide semiconductor film, a gate electrode over the gate insulating film, a second insulating film over the gate electrode, a third insulating film over the second insulating film, and a source and a drain electrodes over the third insulating film; the source and the drain electrodes are electrically connected to the oxide semiconductor film; a capacitor includes a first and a second conductive films and the second insulating film; the first conductive film and the gate electrode are provided over the same surface; the second conductive film and the source and the drain electrodes are provided over the same surface; and the second insulating film is provided between the first and the second conductive films.
Abstract:
The number of lithography processes is reduced and a high-definition display device is provided. The display device includes a pixel portion and a driver circuit for driving the pixel portion. The pixel portion includes a first transistor and a pixel electrode electrically connected to the first transistor. The driver circuit includes a second transistor and a connection portion. The second transistor includes a metal oxide film, first and second gate electrodes that face each other with the metal oxide film positioned therebetween, source and drain electrodes over and in contact with the metal oxide film, and a first wiring connecting the first and second gate electrodes. The connection portion includes a second wiring on the same surface as the first gate electrode, a third wiring on the same surface as the source electrode and the drain electrode, and a fourth wiring connecting the second wiring and the third wiring. The pixel electrode, the first wiring, and the fourth wiring are formed using the same layer.