摘要:
A Magnetic-field melting preform solder that melts by action of an AC magnetic field, wherein the preform solder includes a laminated structure made up of two or more layers, at least two layers constituting the laminated structure is made up of solder material, the at least two layers do not contain ferromagnetic material, each of the at least two layers includes a surface facing with each other, and the surfaces facing with each other are in contact with each other. A bonding method using the preform solder includes a providing the preform solder between an electrode on a substrate and an electrode of an electronic component, and bonding together the electrode on the substrate and the electrode of the electronic component by generating an AC magnetic field around the substrate and thereby melting the preform solder.
摘要:
A magnetic-field melting solder that melts by the action of an AC magnetic field is provided. The magnetic-field melting solder includes solder material; and magnetic material composing of ferrite or Ni, a proportion of the magnetic material to the entire magnetic-field melting solder being 0.005% to 5% by weight. A joining method using the magnetic-field melting solder includes providing the magnetic-field melting solder between an electrode on a substrate and an electrode of an electronic component, and joining together the electrode on the substrate and the electrode of the electronic component by generating an AC magnetic field around the substrate and thereby melting the magnetic-field melting solder.
摘要:
The present invention provides a heat dissipation film having high mechanical strength and flexibility, which is obtained by laminating a heat emission layer excellent in heat dissipation by infrared radiation, electrical insulation, and heat resistance on a metal film having excellent heat transfer efficiency. The present invention also provides a dispersion for heat emission layers for use in the production of the heat dissipation film, a method for producing a heat dissipation film using the dispersion for heat emission layers, and a solar cell including the heat dissipation film. The present invention provides a heat dissipation film including a heat transfer layer; and a flexible heat emission layer laminated on the heat transfer layer, the heat transfer layer being a metal film, the heat emission layer containing a water-insoluble inorganic compound and a heat-resistant synthetic resin, the amount of the water-insoluble inorganic compound in the heat emission layer being 30 to 90% by weight relative to the total weight of the heat emission layer, the heat emission layer having a thermal emissivity of at least 0.8 and a dielectric breakdown strength of at least 10 kV/mm.
摘要:
A method of mounting electronic devices, including the steps of:
irradiating with microwaves a board for mounting electronic devices including a base, a plurality of solder parts on the base, and a plurality of electronic devices corresponding to the plurality of solder parts placed in contact with the plurality of solder parts, the microwave irradiation is performed in a state in which electromagnetic shielding is performed for some of the plurality of solder parts; and heating and melting at least the solder parts for which the electromagnetic shielding is not performed by an action of a magnetic field of a standing wave formed by the microwave irradiation.
摘要:
A mounting wiring board, containing a base, an electrode portion disposed on the base, and a heat generation pattern disposed on the electrode portion and to be heated by a standing wave of a microwave, in which an occupation area of the heat generation pattern is smaller than an area of an upper surface of the electrode portion; an electronic device mounting board using the mounting wiring board; a method of mounting the electronic device; a microwave heating method, which contains heating an object to be heated provided via the heat generation pattern; and a microwave heating apparatus.
摘要:
A microwave heating method using a microwave, including: controlling a frequency of the microwave, to form a single-mode standing wave; disposing an object to be heated in a magnetic field region where a strength of a magnetic field formed by the single-mode standing wave is uniform and maximum; and heating the object to be heated by magnetic heat generation by magnetic loss caused by an action of the magnetic field of the magnetic field region, and/or induction heating by an induced current generated in the object to be heated due to the magnetic field of the magnetic field region.