Abstract:
A process for the production of ezetimibe and intermediates used in said process are disclosed. A kind of Morita-Baylis-Hillman adduct can be altered to chiral carboxylic acid derivatives of β-arylamino α-methylene with high activity and selectivity by means of ally lamination reaction, and the above carboxylic acid derivatives of β-arylamino α-methylene can be altered to the chiral intermediates of ezetimibe by means of simple conversion and further synthesized into the chiral drug ezetimibe. The synthesis route introduces chirality through the use of a chiral catalysis method, thereby avoiding the use of the chiral auxiliary oxazolidinone; and the route is economical and eco-friendly.
Abstract:
Provided is a method for preparing methanol and diol from cyclic carbonate, comprising: under a hydrogen atmosphere, in an organic solvent, and with the presence of a ruthenium complex (Ru(L)XYY′) and an alkali, conducting a hydrogenation reduction reaction on the cyclic carbonate or polycarbonate to obtain methanol and diol. Also provided is a ruthenium complex prepared from ruthenium and a tridentate amido diphosphine ligand. Also provided is a deuterated methanol and deuterated diol preparation method by substituting the hydrogen and ruthenium complex with deuterium.
Abstract:
The present invention relates to the field of synthetic medicinal chemistry and provides a series of novel diaryl-β-lactam compounds having significant anti-tumor activity, and the pharmaceutical use thereof. The present invention also comprises the use of these compounds, pharmaceutical salts, and pharmaceutical composition thereof for preparing a pharmaceutical for the prevention or treatment of tumor-associated disease. The diaryl-β-lactam compounds of the present invention have the following general formula (I).
Abstract:
Disclosed are aromatic spiroketal diphosphine ligands, preparation methods and uses thereof. The ligands have the structure of formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, X and n are defined as such described in the specification. The aromatic spiroketal diphosphine ligands are prepared from aromatic spiroketal compounds. Also disclosed are the preparation methods of aromatic spiroketal compounds. The preparation methods are simple and can produce racemic or chiral aromatic spiroketal diphosphine ligands. The ligands can be used as catalysts of asymmetrical catalytic reactions having economical practicability and industry application prospect.
Abstract:
Chiral spirobiindane skeleton compound and preparation method thereof is disclosed in the present invention. The spirobiindane skeleton compound of the present invention having the structure formula of I or I′; the preparation method for synthesizing the spirobiindane skeleton compound of the present invention comprising the following steps: in the presence of solvent and catalysts, the structure formula compound III reacted through intramolecular Friedel-Crafts reaction to obtain the compound of formula I; the catalyst is a Browsteric acidor Lewis acid. The preparation method of chiral fused spirobiindane skeleton compound of the present invention does not need to adopt chiral starting materials or chiral resolving agents, does not require chiral resolving steps, is simple in method, is simple in post-treatment, and is economic and environment friendly. High product yield, high product optical purity and chemical purity. The catalyst for the asymmetric reaction is obtained from the chiral spirobiindane skeleton ligand of the present invention, under the catalytic reagent of transition metal, the catalyzed hydrogenation reaction can arrive at a remarkable catalytic effect with a product yield of >99%, and a product ee value of up to >99%.
Abstract:
Disclosed are aromatic spiroketal diphosphine ligands, preparation methods and uses thereof. The ligands have the structure of formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, X and n are defined as such described in the specification. The aromatic spiroketal diphosphine ligands are prepared from aromatic spiroketal compounds. Also disclosed are the preparation methods of aromatic spiroketal compounds. The preparation methods are simple and can produce racemic or chiral aromatic spiroketal diphosphine ligands. The ligands can be used as catalysts of asymmetrical catalytic reactions having economical practicability and industry application prospect
Abstract:
A process for the production of ezetimibe and intermediates used in said process are disclosed. A kind of Morita-Baylis-Hillman adduct can be altered to chiral carboxylic acid derivatives of β-arylamino α-methylene with high activity and selectivity by means of ally lamination reaction, and the above carboxylic acid derivatives of β-arylamino α-methylene can be altered to the chiral intermediates of ezetimibe by means of simple conversion and further synthesized into the chiral drug ezetimibe. The synthesis route introduces chirality through the use of a chiral catalysis method, thereby avoiding the use of the chiral auxiliary oxazolidinone; and the route is economical and eco-friendly.