Abstract:
Phosphine phosphonate and phenoxyphosphine ligands bearing polyethylene glycol (PEG) chains are used as described herein to produce heterobimetallic catalysts. The ligands can be metallated selectively with palladium or nickel and secondary metal ions to provide well-defined heterobimetallic compounds. These heterobimetallic complexes exhibit accelerated reaction rates and greater thermal stability in olefin polymerization compared to other catalysts.
Abstract:
The invention describes a novel nickel-based composition. The invention also concerns the use of said composition as a catalytic composition in an olefin oligomerization process.
Abstract:
The title compounds can be prepared by reaction of a styrene derivative with ethylene in the presence of a nickel catalyst which carries a phosphorus-oxygen chelate ligand, at a temperature of 20.degree.to 160.degree. C. and an ethylene pressure of 1 to 200 bar. Styrene derivatives extended with ethylene, of the formula ##STR1## in which R.sup.19 denotes hydrogen, C.sub.1 -C.sub.4 -alkyl, vinyl or chlorine and R.sup.38 denotes C.sub.1 -C.sub.4 -alkyl, C.sub.2 -C.sub.4 -alkenyl, C.sub.2 -C.sub.7 -acyl, flourine, chlorine or bromine andm assumes values of 4-104,with the exception of compounds wherein R.sup.19 denotes hydrogen and R.sup.38 denotes i-butyl or benzoyl, and m assumes the value 4, are new.
Abstract:
Ethylene is oligomerized by contacting ethylene under oligomerization conditions with a nickel ylide defined by the following Formula I: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, R.sub.6, R.sub.7 and R.sub.8 are either alike or different members selected from the group consisting of hydrogen, alkyl radicals having from about one to about 24 carbon atoms, preferably from about one to about 10 carbon atoms; aryl radicals having from about six to about 20 carbon atoms, preferably from about six to about 10 carbon atoms; alkenyl radicals having from about two to about 30 carbons atoms, preferably from about two to about 20 carbon atoms; cycloalkyl radicals having from about three to about 40 carbon atoms, preferably from about three to about 30 carbon atoms; aralkyl and alkaryl radicals having from about six to about 40 carbon atoms, preferably from about six to about 30 carbon atoms; a halogen radical selected from the group consisting of fluorine, chlorine, bromine and iodine, preferably chlorine; a hydroxyl group; an alkoxy or aryloxy group; and a hydrocarbyl group, such as defined above, carrying halogen, hydroxyl or alkoxy or aryloxy; provided that at least one, preferably from about one to about four, of each of R.sub.1 to R.sub.8 is a sulfonato group (--SO.sub.3.sup.-) or an alkyl, aryl, alkenyl, cycloalkyl, aralkyl or alkaryl group carrying a sulfonato group; M is sulfur or oxygen, preferably oxygen; E is phosphorus, arsenic, antimony or nitrogen, preferably phosphorus; and F is phosphorus, arsenic or antimony, preferably phosphorus. This process is characterized by a relatively high reaction rate at low temperatures and pressures and results in the production of relatively high proportions of desirable trimer, tetramer, pentamer, and higher olefinic products.
Abstract:
Ethylene is oligomerized to linear, alpha-olefins by reacting ethylene in liquid phase solution in the presence of a catalyst composition produced by contacting in the presence of ethylene (1) a simple divalent nickel salt (2) a boron hydride reducing agent (3) a phosphinooacetic acid or alkali metal salt thereof.
Abstract:
Phosphine phosphonate and phenoxyphosphine ligands bearing polyethylene glycol (PEG) chains are used as described herein to produce heterobimetallic catalysts. The ligands can be metallated selectively with palladium or nickel and secondary metal ions to provide well-defined heterobimetallic compounds. These heterobimetallic complexes exhibit accelerated reaction rates and greater thermal stability in olefin polymerization compared to other catalysts.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
The invention describes a nickel-based composition. The invention also concerns the use of said composition as a catalytic composition in an olefin oligomerization process.
Abstract:
Disclosed are aromatic spiroketal diphosphine ligands, preparation methods and uses thereof. The ligands have the structure of formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, X and n are defined as such described in the specification. The aromatic spiroketal diphosphine ligands are prepared from aromatic spiroketal compounds. Also disclosed are the preparation methods of aromatic spiroketal compounds. The preparation methods are simple and can produce racemic or chiral aromatic spiroketal diphosphine ligands. The ligands can be used as catalysts of asymmetrical catalytic reactions having economical practicability and industry application prospect.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.