Abstract:
A process for converting a biomass material comprising a) pyrolyzing a biomass material to produce a biomass-derived pyrolysis product; b) providing a petroleum-derived hydrocarbon composition having a C7-asphaltenes content of equal to or more than 0.2 wt %, based on the total weight of the petroleum-derived hydrocarbon composition, which petroleum-derived hydrocarbon composition has a total acid number of equal to or more than 0.5 mg KOH/g and/or a density at 15.5° C. of equal to or more than 0.8 grams/ml and/or a viscosity at 37.8° C. of equal to or more than 500 centiStokes (cSt); c) mixing at least part of the biomass-derived pyrolysis product and at least part of the petroleum-derived hydrocarbon composition to produce a hydrocarbon-containing mixture; and d) dewatering the hydrocarbon-containing mixture to produce a dewatered hydrocarbon-containing mixture.
Abstract:
The invention relates to a process for the oxidative coupling of methane comprising converting methane to one or more C2+ hydrocarbons in a reactor, wherein said process comprises contacting a reactor feed comprising methane and oxygen with a catalyst composition and wherein the linear gas velocity of said reactor feed in the region above the catalyst bed is at least 0.6 m/s, the linear gas velocity through the catalyst bed is at least 0.6 m/s and the partial pressure of oxygen in the reactor is greater than 0.08 MPa.
Abstract:
A process comprising passing methane through a reaction zone comprising a molten salt/metal bed under reaction conditions to produce a gas stream comprising hydrogen and a solid carbon product wherein the reaction zone comprises a hydrogen acceptor.
Abstract:
The invention relates to a method for start-up and operation of a Fischer-Tropsch reactor comprising the steps of: (a) providing a reactor with a fixed bed of reduced Fischer-Tropsch catalyst that comprises cobalt as catalytically active metal; (b) supplying a gaseous feed stream comprising carbon monoxide and hydrogen to the reactor, wherein the gaseous feed stream initially comprises a nitrogen-containing compound other than molecular nitrogen in an initial concentration in the range of from 0.1 to 50 ppmv based on the volume of the gaseous feed stream; (c) converting carbon monoxide and hydrogen supplied with the gaseous feed stream to the reactor into hydrocarbons at an initial reaction temperature, wherein the initial reaction temperature is set at a value of at least 200° C. and hydrocarbons are produced at a first yield; (d) maintaining the initial reaction temperature at the set value and maintaining the first yield by decreasing the concentration of the nitrogen-containing compound in the gaseous feed stream supplied to the reactor; (e) optionally increasing the reaction temperature after the concentration of the nitrogen-containing compound in the gaseous feed stream has decreased to a value below 100 ppbv.
Abstract:
A catalyst system, which is active in pyrolyzing methane at reaction temperatures above 700° C., comprising a molten salt selected from the group consisting of the halides of alkali metals; the halides of alkaline earth metals; the halides of zinc, copper, manganese, cadmium, tin and iron; and mixtures thereof, the molten salt having dispersed therein one or more catalytically active forms of iron, molybdenum, manganese, nickel, cobalt, zinc, titanium, and copper in the form of finely divided elemental metals, metal oxides, metal carbides or mixtures thereof.
Abstract:
Toluene-insoluble hydrocarbon-containing compounds are selectively separated from a hydrocarbon-containing feedstock containing at least 5 wt. % n-heptane insoluble hydrocarbon-containing materials, wherein at least 10 wt. % of the n-heptane insoluble hydrocarbon-containing materials are toluene insoluble hydrocarbon-containing materials, by contacting the hydrocarbon-containing feedstock with a porous silica adsorbent having a median pore size diameter of less than 180 Å at a temperature of from 120° C. to 300° C.