Abstract:
A conductivity meter for measuring the conductivity of a sample of non-aqueous liquid. The conductivity meter includes a conductivity cell which contains the sample and which is disposed within a heater block which can control the temperature of the sample and a pressure vessel which can control the surrounding pressure for the conductivity cell. A probe senses conductivity of the sample as a voltage is applied across the sample.
Abstract:
A conductivity measurement apparatus for measuring the conductivity of a non-aqueous sample. The conductivity measurement apparatus includes a conductivity cell which contains the sample and which is disposed within a heater block which can control the temperature of the sample and a pressure vessel which can control the surrounding pressure for the conductivity cell. A probe senses conductivity of the sample as a voltage is applied across the sample.
Abstract:
Decreasing the water content of an organic phase can often be desirable, but low water levels can be difficult to achieve at high fluxes when the water is present in an emulsified form, such as in a water-in-oil emulsion. Processes for de-emulsifying a fluid stream containing emulsified water, such as water-in-crude oil emulsions, include introduction of the fluid stream into a vessel that defines a coalescence zone. The vessel is configured to provide for simultaneous application of a centrifugal force and an electric field to the fluid stream within the coalescence zone. The simultaneous application of the centrifugal force and the electric field to the fluid stream provides for the coalescence of a portion of the emulsified water into a bulk aqueous phase. A biphasic mixture comprising continuous phases of the organic component and the bulk aqueous phase is formed within the coalescence zone and subsequently removed from the vessel.
Abstract:
Low-water content organic phases can be difficult to achieve at high fluxes when water is present in an emulsified form, such as in a water-in-oil emulsion. Processes for de-emulsifying a fluid stream containing emulsified water, such as water-in-crude oil emulsions, include introduction of the fluid stream into a vessel that defines a coalescence zone. The vessel is configured to provide for simultaneous application of a centrifugal force and an electric field to the fluid stream within the coalescence zone. The simultaneous application of the centrifugal force and the electric field to the fluid stream provides for the coalescence of a portion of the emulsified water into a bulk aqueous phase. Continuous phases of the organic component and the bulk aqueous phase form in the coalescence zone and are separately removed from the vessel. The bulk aqueous phase is removed from the underside of the vessel.
Abstract:
Decreasing the water content of an organic phase can often be desirable, but low water levels can be difficult to achieve at high fluxes when the water is present in an emulsified form, such as in a water-in-oil emulsion. Processes for de-emulsifying a fluid stream containing emulsified water, such as water-in-crude oil emulsions, include introduction of the fluid stream into a vessel that defines a coalescence zone. The vessel is configured to provide for simultaneous application of a centrifugal force and an electric field to the fluid stream within the coalescence zone. The simultaneous application of the centrifugal force and the electric field to the fluid stream provides for the coalescence of a portion of the emulsified water into a bulk aqueous phase. A biphasic mixture comprising continuous phases of the organic component and the bulk aqueous phase is formed within the coalescence zone and subsequently removed from the vessel.
Abstract:
Presented is a process for desalting crude oil. The process includes mixing a partially dehydrated crude oil, comprising less than 10 vol. % water and at least one water-extractable contaminant, with an aqueous wash fluid. A water-in-oil emulsion is formed. The water-in-oil emulsion is introduced into a first coalescence zone defined by a first vessel. The first vessel is configured to apply an electric field to the emulsion. The water-in-oil emulsion is broken within the first coalescence zone in the presence of the electric field under dynamic flow conditions to form a partially desalted crude oil and a non-emulsified aqueous salt solution. The partially desalted crude oil and the non-emulsified aqueous salt solution are then separated from one another under the dynamic flow conditions to yield a separated, partially desalted crude oil comprising less than 1 vol. % water.
Abstract:
Low-water content organic phases can be difficult to achieve at high fluxes when water is present in an emulsified form, such as in a water-in-oil emulsion. Processes for de-emulsifying a fluid stream containing emulsified water, such as water-in-crude oil emulsions, include introduction of the fluid stream into a vessel that defines a coalescence zone. The vessel is configured to provide for simultaneous application of a centrifugal force and an electric field to the fluid stream within the coalescence zone. The simultaneous application of the centrifugal force and the electric field to the fluid stream provides for the coalescence of a portion of the emulsified water into a bulk aqueous phase. Continuous phases of the organic component and the bulk aqueous phase form in the coalescence zone and are separately removed from the vessel. The bulk aqueous phase is removed from the underside of the vessel.