Abstract:
The present disclosure relates to the technical field of liquid crystal display, and particularly, relates to a device for fixing a quantum strip of a display. The device includes: a first support extending along a first direction, which first support is capable of clamping the long ineffective part of the quantum strip and being fixedly connected to the shell of the display, and which first support is provided with a connecting portion on one end in the first direction; a second support extending along the first direction, which second support is capable of clamping the effective part of the quantum strip and being fixedly connected to the shell of the display, and which second support is provided with connecting portions on both ends in the first direction, wherein the first support is connected to the second support on at least one end of the second support. The device according to the present disclosure can be flexibly spliced based on different numbers of the quantum strips, and a plurality of backlight incidences, including single-long incidence, double-long incidence, single-short incidence and double-short incidence and the like, can be achieved simultaneously.
Abstract:
A wall-mounted device includes a sliding bar connecting to a display panel, a fixed frame being mounted on a wall, and a guiding-track assembly being configured between the sliding bar and the fixing frame. The guiding-track assembly includes a first guiding track and a second guiding track, the first guiding track engages with the sliding bar in a sliding manner, and the second guiding track engages with the fixed frame in the sliding manner, wherein the sliding bar is installed in a pre-configured first direction, and the fixed frame is installed in a pre-configured second direction. With such configuration, the wall-mounted device has configurable locations from multiple orientations. The wall-mounted device has simple structure, and may be operated easily. In addition, after being adjusted, the wall-mounted device may be fixed on the wall via positioning assemblies so as to prevent the display panel from being inadvertently moved.
Abstract:
A backlight module includes a backplane, a light guide plate arranged in the backplane, a backlight source arranged in the backplane and located at one side of the light guide plate, a quantum dot rail arranged between the backlight source and the light guide plate, and a retention rack that is fixedly mounted to the backplane to receive and retain a first side of the quantum dot rail. The retention rack includes a trough section in the form of a concave recess receiving and retaining the first side of quantum dot rail therein. The quantum dot rail has a second side that is opposite to the first side and a reflection sheet is attached to the second side of the quantum dot rail such that the reflection sheet is opposite to the trough section of the retention rack mounted to the backplane.
Abstract:
The invention provides a backplane with adjustable curvature and its application. The backplane includes an active layer and a passive layer connected with the active layer. The active layer is formed by a material with a first thermal expansion coefficient, and the passive layer is formed by a material with a second thermal expansion coefficient. The first thermal expansion coefficient is greater than the second thermal expansion coefficient. It further includes a temperature sensor set on the backplane and a temperature controller electrically coupled to the backplane to adjust the backplane temperature. A fast and continuous adjustment to the curvature of the backplane can be achieved by controlling the temperature of the backplane. The backplane with the adjustable curvature is applied to liquid crystal display devices or organic light emitting diode display devices to enable a convenient, fast and continuous adjustment to the curvature of the display device, allowing users to watch and access to different display status based on different needs.
Abstract:
The present disclosure relates to the technical field of liquid crystal display, and particularly, relates to a device for fixing a quantum strip of a display and a display thereof. The device includes: a main body, provided with a cavity used for accommodating the quantum strip; a matching surface for clamping the quantum strip, which forms at least a part of the peripheral wall of the cavity and is capable of being firmly jointed with the outer surface of the quantum strip; and a connecting structure used for fixing the main body to the display. A proper material can be used for the main body for physical protection and thermal insulation protection on the quantum strip. The connecting structure is used for fixing the device to the display at a fixed position. The display includes the device. The device and the display can prevent the overturn and translation of the quantum strip, which is to avoid the influence on the light emitting effect of the backlight source and ensure the quality of the display. In addition, the main body of the device surrounds the quantum strip, which provides thermal protection and prevents physical damage and scratch.
Abstract:
A backlight module including a back plate and a heating device is disclosed. The back plate includes a passive layer and an active layer adhered below the passive layer, wherein a coefficient of heat expansion of the active layer is greater than that of the passive layer. The heating device is configured for controlling a heating temperature of the back plate so as to adjust a rate of curvature of the back plate toward a liquid crystal panel. In addition, a LCD and an OLED display device are also disclosed. The rates of curvature of the backlight module, the LCD, and the OLED display device may be adjusted accordingly.