Abstract:
An object of the present invention is to suppress flooding phenomenon in an electrode catalyst for fuel cells containing a metal atom, a carbon atom, a nitrogen atom and an oxygen atom. A production process of an electrode catalyst for fuel cells is provided which includes a fluorination step of bringing a catalyst body into contact with fluorine, the catalyst body having an atom of at least one metal element selected from the group consisting of zinc, titanium, niobium, zirconium, aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, samarium and lanthanum, a carbon atom, a nitrogen atom and an oxygen atom.
Abstract:
A method for producing a lubricating oil composition includes: a step of mixing a base oil and fullerene, dissolving a soluble component of the fullerene in the base oil, and obtaining a mixture of the base oil and fullerene; a step of removing an insoluble component included in the mixture and obtaining a fullerene solution; and a step of heat-treating the fullerene solution.
Abstract:
An oxygen reduction catalyst which includes composite particles including a portion including an inorganic metal compound and a portion containing carbon. The composite particles include a metal element M1, carbon, and oxygen as constituent elements; the amount of carbon atoms is 1 to 10 mol, and the amount of oxygen atoms is 1 to 3 mol, assuming that the total amount of atoms in the metal element M1 is 1 mol; a G-band and a D-band are present in a Raman spectrum, and a V/G ratio defined in an expression described below is 0.10 to 0.35: V/G ratio=(minimum value of spectral intensity in region V which is a region between G-band and D-band)/(peak intensity in G-band).
Abstract:
A catalyst carrier production process includes a step (a) of mixing a transition metal compound (1), a nitrogen-containing organic compound (2), and a solvent to provide a catalyst carrier precursor solution; a step (b) of removing the solvent from the catalyst carrier precursor solution; and a step (c) of thermally treating a solid residue obtained in the step (b) at a temperature of 500 to 1100° C. to provide a catalyst carrier; wherein the transition metal compound (1) is partly or wholly a compound including a transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element; and at least one of the transition metal compound (1) and the nitrogen-containing organic compound (2) includes an oxygen atom.
Abstract:
Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium. Also disclosed is a process for producing the catalyst.
Abstract:
A catalyst carrier production process includes a step (a) of mixing a transition metal compound (1), a nitrogen-containing organic compound (2), and a solvent to provide a catalyst carrier precursor solution; a step (b) of removing the solvent from the catalyst carrier precursor solution; and a step (c) of the thermally treating a solid residue obtained in the step (b) at a temperature of 500 to 1100° C. to provide a catalyst carrier; wherein the transition metal compound (1) is partly or wholly a compound including a transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element; and at least one of the transition metal compound (1) and the nitrogen-containing organic compound (2) includes an oxygen atom.
Abstract:
The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
Abstract:
A lubricating oil composition is provided, including a fullerene and a base oil, in which the fullerene is a fullerene sublimate, and the base oil is a multiply alkylated cyclopentane oil or an ionic liquid.
Abstract:
A method for inspecting a lubricant oil composition containing a base oil and a fullerene, the method including: measuring at least one of a lamellar length of the lubricating oil composition and a most abundant diameter in a particle size distribution obtained by a dynamic light scattering method, and selecting the lubricating oil composition whose measured value is within a set range.