Abstract:
A CVD device including: a chamber containing a substrate having a SiC-film formation surface; a heating mechanism for heating the substrate from a direction opposite the film formation surface; a third supply space (231) for supplying a third raw-material gas containing carbon in a direction (X) toward the substrate from the lateral side of the substrate; a second supply space (221) for supplying a second raw-material gas containing silicon in the direction (X) from the lateral side of the substrate toward the side farther than the third raw-material gas when viewed from the film formation surface; and a blocking gas supply section for supplying a blocking gas for suppressing the upward movement of the third raw-material gas and the second raw-material gas in a second direction from the side facing the film formation surface toward the film formation surface.
Abstract:
A CVD device equipped with a container chamber (100) having an interior space (100a), and containing a substrate in a manner such that the film formation surface thereof faces upward from the bottom side (fifth region (A5)) of the interior space (100a). Silane gas and propane gas are supplied to the interior space (100a). A stainless-steel ceiling (120) is provided on the top of the interior space (100a). The ceiling (120) is provided with first through third partition members (171-173) attached thereto which comprise stainless steel, are positioned so as to extend in the -Z-direction and transect the X-direction, and divide the top side of the interior space (100a) into first through fourth regions (A1-A4). The substrate positioned inside the interior space (100a) is heated to 1600° C. The first through third partition members (171-173) and the ceiling (120) are cooled to 300° C. or lower by a cooling mechanism.