Abstract:
A polishing device includes a processing vessel into which workpieces are charged, a fluidizing unit that fluidizes the workpieces in the processing vessel, an abrasive-feeding unit that feeds an abrasive into the workpieces, and a suction unit that generates an air flow in a direction in which the abrasive passes through the processing vessel, and recovers the abrasive by suction. The abrasive fed from the abrasive-feeding unit is allowed to pass between the workpieces charged into the processing vessel by the air flow generated from the suction unit while coming into contact with the workpieces. Accordingly, the workpieces are polished.
Abstract:
A polishing method includes: a step of preparing a polishing device including a processing member and a suction mechanism configured to generate suction force; a step of setting a workpiece in the processing member; and a step of accelerating abrasive grains fed toward the workpiece to a predetermined speed with an air flow generated by operation of the suction mechanism, and polishing the workpiece by causing the abrasive grains to contact with or collide with the workpiece.
Abstract:
A centrifugal barrel includes a disc-like turret configured to turn about a revolution shaft, a plurality of barrel tanks each installed in the turret via a rotation shaft and configured to turn about the rotation shaft, a rotating mechanism configured to turn the turret and the barrel tanks, and a tilting mechanism configured to tilt the revolution shaft of the turret with respect to a horizontal plane and to tilt each rotation shaft with respect to the horizontal plane. By tilting each rotation shaft with respect to the horizontal plane, it is possible to prevent the workpieces from being damaged.
Abstract:
A warp correction apparatus includes an injection mechanism including a nozzle that performs injection treatment, an adsorption table that holds the semiconductor element substrate by adsorption at a principal surface side or a film surface side, a moving mechanism that moves the adsorption table so that the semiconductor element substrate relatively moves with respect to an injection area of an injection particle by the nozzle, an injection treatment chamber that houses the semiconductor element substrate held on the adsorption table and in the interior of which injection treatment is performed, a measurement mechanism that measures a warp of the semiconductor element substrate, and a control device that, based on a difference between a target warp amount and a warp amount measured by the measurement mechanism, performs at least either one of a setting processing of an injection treatment condition of the injection mechanism and an accept/reject determination of the semiconductor element substrate for which injection treatment has been performed.
Abstract:
A method for manufacturing a component made of a hard brittle material includes: a step of preparing a base material made of a hard brittle material; and a step of embossing the base material. A protrusion protruding in a first direction and a bottom surface surrounding the protrusion are formed on the base material by the embossing. The bottom surface extends in a plane defined by a second direction intersecting the first direction and a third direction intersecting the first direction and the second direction. The bottom surface and a side surface of the protrusion continuous with the bottom surface satisfy a relationship of z=Ax2−Bx in a cross section defined by the first direction and the second direction when the first direction is represented by z and the second direction is represented by x. A is 0.005 to 0.200 and B is 0.050 to 0.955.
Abstract:
A blasting apparatus includes: a storage container including a storage chamber; a volumetric feeder; and a nozzle configured to project, together with compressed air, an abrasive supplied from the volumetric feeder, wherein: the volumetric feeder includes: a casing configured to define a space on an inside, and including an introduction port causing the space and the storage chamber to communicate with each other and a supply port opened toward a lower side in a position separated from the introduction port in a horizontal direction; and a screw including a rotational shaft housed in the casing and extending along the horizontal direction, the screw configured to carry the abrasive in the space toward the supply port from the introduction port by rotating about the rotational shaft; wherein the screw is housed in the casing in such a way as not to overlap the supply port in a vertical direction.