Abstract:
A semiconductor integrated circuit device, a method of manufacturing the same, and a method of driving the same are provided. The device includes a semiconductor substrate, an upper electrode extending from a surface of the semiconductor substrate; a plurality of switching structures extending from both sidewalls of the upper electrode in a direction parallel to the surface of the semiconductor substrate, and a phase-change material layer disposed between the plurality of switching structures and the upper electrode.
Abstract:
A semiconductor integrated circuit apparatus and a method of manufacturing the same are provided. The semiconductor integrated circuit apparatus includes a semiconductor substrate having an active island, a gate buried in a predetermined portion of the active island, a source and a drain formed at both sides of the gate, and a current blocking layer formed in the active island corresponding to a lower portion of the drain. When current flows in from the drain, the current blocking layer is configured to discharge the current into the inside of the semiconductor substrate through a lower portion of the source.
Abstract:
The present disclosure relates to a computing system. The computing system may include a memory system including a plurality of memory devices configured to store raw data and a near data processor (NDP) configured to receive the raw data by a first bandwidth from the plurality of memory devices and generate intermediate data by performing a first operation on the raw data, and a host device coupled to the memory system by a second bandwidth and determining a resource to perform a second operation on the intermediate data based on a bandwidth ratio and a data size ratio.
Abstract:
A semiconductor integrated circuit apparatus and a method of manufacturing the same are provided. The semiconductor integrated circuit apparatus includes a semiconductor substrate having an active island, a gate buried in a predetermined portion of the active island, a source and a drain formed at both sides of the gate, and a current blocking layer formed in the active island corresponding to a lower portion of the drain. When current flows in from the drain, the current blocking layer is configured to discharge the current into the inside of the semiconductor substrate through a lower portion of the source.
Abstract:
A semiconductor integrated circuit apparatus and a method of manufacturing the same are provided. The semiconductor integrated circuit apparatus includes a semiconductor substrate having an active island, a gate buried in a predetermined portion of the active island, a source and a drain formed at both sides of the gate, and a current blocking layer formed in the active island corresponding to a lower portion of the drain. When current flows in from the drain, the current blocking layer is configured to discharge the current into the inside of the semiconductor substrate through a lower portion of the source.
Abstract:
A computing system capable of reducing data movement during an embedding operation and efficiently processing the embedding operation includes a host and a memory system. The host divides a plurality of feature tables, each including a respective plurality of embedding vectors for a respective plurality of elements, into a first feature table group and a second feature table group; generates a first embedding table configured of the first feature table group; and sends a request for a generation operation of a second embedding table configured of the second feature table group to the memory system. The memory system generates the second embedding table according to the generation operation request provided by the host. The host divides the plurality of feature tables into the first feature table group and the second feature table group based on the number of elements included in each of the plurality of feature tables.
Abstract:
A semiconductor integrated circuit device, a method of manufacturing the same, and a method of driving the same are provided. The device includes a semiconductor substrate, an upper electrode extending from a surface of the semiconductor substrate; a plurality of switching structures extending from both sidewalls of the upper electrode in a direction parallel to the surface of the semiconductor substrate, and a phase-change material layer disposed between the plurality of switching structures and the upper electrode.