摘要:
The present disclosure relates to a method for upgrading hydrocarbon using C4, C5 and C6 streams, and more specifically, to a method for upgrading hydrocarbons using C4, C5 and C6 streams. The method includes the steps of: preparing C4, C5 and C6 streams, which are the products of naphtha catalytic cracking (NCC) process, heavy oil upgrading process, thermal cracking process, or fluidized catalytic cracking (FCC or RFCC) process; oligomerizing the C4, C5 and C6 streams with a catalyst to produce branched unsaturated hydrocarbons; and fractional distillating the branched unsaturated hydrocarbons to separate into C14-18 products or C32-40 products.
摘要:
The present disclosure relates to a method for upgrading hydrocarbon using C4, C5 and C6 streams, and more specifically, to a method for upgrading hydrocarbons using C4, C5 and C6 streams. The method includes the steps of: preparing C4, C5 and C6 streams, which are the products of naphtha catalytic cracking (NCC) process, heavy oil upgrading process, thermal cracking process, or fluidized catalytic cracking (FCC or RFCC) process; oligomerizing the C4, C5 and C6 streams with a catalyst to produce branched unsaturated hydrocarbons; and fractional distillating the branched unsaturated hydrocarbons to separate into C14-18 products or C32-40 products.
摘要:
The present invention relates to a catalytic cracking catalyst for RFCC process with maximized diesel yield which includes a clay matrix and an inorganic oxide, wherein pores with a diameter greater than 20 Å are controlled, to be greater than 80% by volume of the total pore count of the catalyst, and a method for the preparation thereof.
摘要:
The present invention relates to a catalytic cracking catalyst for RFCC process with maximized diesel yield which includes a clay matrix and an inorganic oxide, wherein pores with a diameter greater than 20 Å are controlled, to be greater than 80% by volume of the total pore count of the catalyst, and a method for the preparation thereof.
摘要:
The present invention relates to a RFCC process. More specifically, the present invention relates to a RFCC process with maximized diesel yield which includes catalytically reacting a catalytic cracking catalyst in which zeolite has been selectively removed, with a petroleum feedstock in a reaction zone of a fluidized bed catalytic cracking unit to thereby obtain a product stream, an unreacted petroleum feedstock and a mixture of the used catalysts, and separating and collecting the product stream from the used catalyst and the unreacted petroleum feedstock.