Abstract:
An electronic device includes a command generation circuit configured to generate a refresh command and a driving control signal, which are enabled during an all-bank refresh operation, according to a logic level combination of an internal chip selection signal and an internal command address. The electronic device also includes a buffer control circuit configured to generate, from the refresh command and the driving control signal, a first buffer enable signal for enabling a first group of buffers and a second buffer enable signal for enabling a second group of buffers.
Abstract:
A system for performing a phase control operation includes: an internal clock generation circuit configured to generate an internal clock by delaying a clock by a first delay variation, and generate a reference clock by delaying the clock by a second delay variation, wherein the internal clock generation circuit generates the internal clock by delaying the clock by the first delay variation which is controlled according to a phase difference between the internal clock and the reference clock; and a data input/output circuit configured to input/output data in synchronization with the internal clock.
Abstract:
A semiconductor device includes a shift register and a control signal generation circuit. The shift register generates shifted pulses, wherein a number of the shifted pulses is controlled according to a mode of a burst length. The control signal generation circuit generates a control signal for setting a burst operation period according to a period during which the shifted pulses are created. The burst operation period is a period during which a burst operation is performed.
Abstract:
A semiconductor device includes an error detection circuit configured to generate fixed data by fixing any one of a first group and a second group included in internal data to a preset level based on a burst chop signal and an internal command address in response to a read command, and generate an error detection signal by detecting an error of the fixed data; and a data output circuit configured to generate latch data by latching the internal data based on a first latch output control signal, and generate output data by serializing the latch data and the error detection signal based on a second latch output control signal.
Abstract:
A semiconductor system may include a controller and a semiconductor device. The controller may output command/address signals. The semiconductor device may generate a plurality of control codes from the command/address signals in a test mode according to a combination of the command/address signals. The semiconductor device may output a first output datum generated by serializing the plurality of control codes, and the first output datum, through a single pad.
Abstract:
A system for performing a phase matching operation includes a controller configured to output a clock, a command, and a strobe signal, and to input/output data. The system also includes a semiconductor device configured to generate an internal strobe signal by matching the phases of the command and the strobe signal according to the clock, and to input/output the data in synchronization with the internal strobe signal, wherein the semiconductor device generates the internal strobe signal from the strobe signal by compensating for a delay amount of a first path to which the command is inputted and a delay amount of a second path to which the strobe signal is inputted.
Abstract:
A shift register includes a latch clock generation circuit and a clock latch circuit. The latch clock generation circuit generates a latch clock signal and an inverted latch clock signal based on a first internal clock signal, a first inverted internal clock signal, a second internal clock signal, and a second inverted internal clock signal. The clock latch circuit latches a control signal in synchronization with one signal selected from the first internal clock signal, the first inverted internal clock signal, the second internal clock signal, and the second inverted internal clock signal. The clock latch circuit also latches the latched control signal in synchronization with the latch clock signal or the inverted latch clock signal to generate and output a shift control signal.
Abstract:
A semiconductor system includes a semiconductor device suitable for not performing an internal refresh operation when entering a self-refresh mode in response to a self-refresh command, and cutting off input of an auto-refresh command when exiting the self-refresh mode.
Abstract:
A portable test apparatus may be provided. The portable test apparatus may include a socket board configured to allow mounting of a semiconductor apparatus decapsulated for package testing. The portable test apparatus may include a test logic board electrically coupled to the socket board, the test logic board configured to perform a test on the semiconductor apparatus and for analyzing a test result. The test logic board may receive power through the socket board. The test logic board may be configured for receiving a command from outside the test apparatus, generating and analyzing a test pattern, and outputting the test result.
Abstract:
An electronic device includes a command generation circuit configured to generate a refresh command and a driving control signal, which are enabled during an all-bank refresh operation, according to a logic level combination of an internal chip selection signal and an internal command address. The electronic device also includes a buffer control circuit configured to generate, from the refresh command and the driving control signal, a first buffer enable signal for enabling a first group of buffers and a second buffer enable signal for enabling a second group of buffers.