Abstract:
Cutting elements include a diamond-bonded body attached with a substrate. The substrate has a coercivity of greater than about 200 Oe, and has a magnetic saturation of from about 73 to 90. The diamond-bonded body has a compressive stress at the surface of greater than about 0.9 GPa after heat treatment, and greater than about 1.2 GPa prior to heat treatment.
Abstract:
A cutting element may include: a substrate; and an ultrahard layer on the substrate, the ultrahard layer having a non-planar working surface, the non-planar working surface being formed from a first region and a second region, the first region, encompassing at least a cutting edge or tip of the cutting element and having a differing composition than the second region.
Abstract:
A cutting element has an intercrystalline-bonded diamond body that includes an inner region and an outer surface that includes a working surface of the cutting element. The outer surface is treated, after formation of the intercrystalline-bonded diamond by high-pressure/high-temperature process, to have a level of surface compressive stress that is greater than a compressive stress of the inner region.
Abstract:
Cutting elements include polycrystalline diamond which may be attached to a substrate. The polycrystalline diamond may have a ratio of cubic to hexagonal cobalt crystalline structures of greater than about 1.2. The polycrystalline diamond may have a high level surface compressive stress of greater than about 500 MPa.
Abstract:
A Diamond Enhanced Insert (DEI) includes a working layer of a polycrystalline diamond material (PCD). The PCD material includes a first phase that includes a number of particles of a first material. The PCD material also includes a second phase that is adapted as a catalyst. The PCD material has a fracture toughness greater than 12.5 MPa·√m, a flexural strength of greater than 800 MPa, and a diamond frame strength of less than 400 MPa.
Abstract:
A cutting element has an ultrahard layer on a substrate, the ultrahard layer having a non-planar working surface. The non-planar working surface is formed from a first region and a second region, where the first region encompasses at least a cutting edge or tip of the cutting element and has a differing composition than the second region.
Abstract:
A cutting element has an intercrystalline-bonded diamond body that includes an inner region and an outer surface that includes a working surface of the cutting element. The outer surface is treated, after formation of the intercrystalline-bonded diamond by high-pressure/high-temperature process, to have a level of surface compressive stress that is greater than a compressive stress of the inner region.
Abstract:
Ultra-hard constructions comprise polycrystalline diamond-body having a first metallic substrate attached thereto, and having a second metallic substrate attached to the first metallic substrate. The first and second substrates each comprise a first hard particle phase, e.g., WC, and a second binder material phase, e.g., Co, wherein the hard particles in the second substrate are sized larger than those in the first substrate. The first substrate may contain a larger amount of binder material than the second substrate. Constructed in this matter, the first substrate is engineered to facilitate sintering diamond body during HPHT conditions, while the second substrate is engineered to provide an improved degree of erosion resistance when placed in an end-use application. The construction may be formed during a single HPHT process. The second substrate may comprise 80 percent or more of the combined thickness of the first and second substrates.
Abstract:
Cutting elements include a diamond-bonded body attached with a substrate. The substrate has a coercivity of greater than about 200 Oe, and has a magnetic saturation of from about 73 to 90. The diamond-bonded body has a compressive stress at the surface of greater than about 0.9 GPa after heat treatment, and greater than about 1.2 GPa prior to heat treatment.
Abstract:
A Diamond Enhanced Insert (DEI) includes a working layer of a polycrystalline diamond material (PCD). The PCD material includes a first phase that includes a number of particles of a first material. The PCD material also includes a second phase that is adapted as a catalyst. The PCD material has a fracture toughness greater than 12.5 MPa·√m, a flexural strength of greater than 800 MPa, and a diamond frame strength of less than 400 MPa.