Abstract:
A method of making a polycrystalline diamond compact includes forming multiple layers of premixed diamond particles and carbonate material, where the carbonate material includes an alkaline earth metal carbonate, and where each layer has a weight percent ratio of diamond to carbonate that is different from adjacent layers. The layers are subjected to high pressure high temperature conditions to form polycrystalline diamond.
Abstract:
A cutting device for use in a drill bit has a body including an ultrahard material. The body has a top surface, a front surface, and at least one lateral surface adjacent the top surface. The lateral surface is oriented at a surface angle relative to the top surface between 30 and 150 degrees. One or more locking features are located on the lateral surface.
Abstract:
A cutting device for use in a drill bit has a body including an ultrahard material. The body has a top surface, a front surface, and at least one lateral surface adjacent the top surface. The lateral surface is oriented at a surface angle relative to the top surface between 30 and 150 degrees. One or more locking features are located on the lateral surface.
Abstract:
Cutting elements include a diamond-bonded body attached with a substrate. The substrate has a coercivity of greater than about 200 Oe, and has a magnetic saturation of from about 73 to 90. The diamond-bonded body has a compressive stress at the surface of greater than about 0.9 GPa after heat treatment, and greater than about 1.2 GPa prior to heat treatment.
Abstract:
A method of forming a polycrystalline diamond body includes mixing a sintering agent with diamond powder to form a premixed layer, the sintering agent including at least one alkaline earth metal carbonate; forming an infiltration layer adjacent to the premixed layer, the infiltration layer including an infiltrant material including at least one alkaline earth metal carbonate; and subjecting the premixed layer and the infiltration layer to high pressure high temperature conditions.
Abstract:
A method of forming a polycrystalline diamond body includes mixing a sintering agent with diamond powder to form a premixed layer, the sintering agent including at least one alkaline eat mewl carbonate; forming an infiltration layer adjacent to the premixed layer, the infiltration layer including an infiltrant material including at least one alkaline earth metal carbonate; and subjecting the premixed layer and the infiltration layer to high pressure high temperature conditions.
Abstract:
Assemblies as disclosed herein for making superhard products by HPHT process comprise a first can portion for accommodating a mixture of materials therein and a second can mated with the first can portion. A leak-tight seal is provided between the first can portion and second can portion in a manner that accommodates the manufacture of relatively longer superhard products without having to change other elements or members used for HPHT processing to thereby provide improved manufacturing flexibility and cost efficiency.
Abstract:
A method of making a polycrystalline diamond compact includes forming multiple layers of premised diamond particles and carbonate material, where the carbonate material includes an alkaline earth metal, carbonate, and where each layer has a weight percent ratio of diamond to carbonate that is different from adjacent layers. The layers are subjected to high pressure high temperature conditions to form polycrystalline diamond.
Abstract:
A method of making a polycrystalline diamond compact includes forming multiple layers of premised diamond particles and carbonate material, where the carbonate material includes an alkaline earth metal, carbonate, and where each layer has a weight percent ratio of diamond to carbonate that is different from adjacent layers. The layers are subjected to high pressure high temperature conditions to form polycrystalline diamond.
Abstract:
A method of forming a polycrystalline diamond body includes mixing a sintering agent with diamond powder to form a premixed layer, the sintering agent including at least one alkaline earth metal carbonate; forming an infiltration layer adjacent to the premixed layer, the infiltration layer including an infiltrant material including at least one alkaline earth metal carbonate; and subjecting the premixed layer and the infiltration layer to high pressure high temperature conditions.