Abstract:
A signal processing device includes phase rotation units which rotate a phase of a signal A and generate two signals having a phase difference of θ, and a control unit which performs transition of θ over time. The control unit controls phases so that θ is approximately 0 degrees at a time point T0 and θ is approximately 180 degrees at a time point T1.
Abstract:
An audio communication device includes: a sound position determiner that determines sound localization positions for N audio signals in a virtual space having first and second walls; N sound localizers each performing sound localization processing to localize sound in the sound localization position determined by the sound position determiner, and outputting localized sound signals; an adder that sums the N localized sound signals, and outputs a summed localized sound signal. Each sound localizer performs the processing using: a first head-related transfer function (HRTF) assuming that a sound wave emitted from the sound localization position of the sound localizer determined by the sound position determiner directly reaches each ear of a hearer virtually present at the hearer position; and a second HRTF assuming that the sound wave emitted from the sound localization position reaches each ear of the hearer after being reflected by closer one of the first and second walls.
Abstract:
A device including a speech recognition function which recognizes speech from a user, includes: a loudspeaker which outputs speech to a space; a microphone which collects speech in the space; a first speech recognition unit which recognizes the speech collected by the microphone; a command control unit which issues a command for controlling the device, based on the speech recognized by the first speech recognition unit; and a control unit which prohibits the command issuance unit from issuing the command, based on the speech to be output from the loudspeaker.
Abstract:
An audio signal processing device includes a memory; and a processor configured to execute receiving a command to determine one set of parameters from among parameters calculated according to positions at which a sound is localized, the positions being set relative to positions of audio output devices; and processing a sound to be output from the audio output devices, by using the one set of parameters determined based on the received command.
Abstract:
An audio signal processor includes: a first amplifier that amplifies a first audio content; a mixer that mixes an output signal of the first amplifier and a second audio content; a second amplifier that amplifies an output signal of the mixer; and a setter that sets an amplification amount of the first amplifier. The setter sets an amplification amount in the first amplifier so that the amplification amount in the first amplifier cancels an amplification amount in the second amplifier.
Abstract:
A signal processing device, comprising a high band attenuation filter which attenuates a signal component in a bandwidth of frequency higher than at least a predetermined frequency in an audio signal that is input, and a hearing aid processor which performs hearing aid processing on a signal output from the high band attenuation filter, wherein the predetermined frequency is determined according to the upper limit of a target bandwidth of frequency for hearing aid.
Abstract:
An audio reproduction apparatus includes: a signal processing unit that converts an audio signal into N channel signals, where N is an integer greater than or equal to 3; and a speaker array including N speaker elements that respectively output the N channel signals as reproduced sound, wherein the signal processing unit includes: a beam formation unit that performs a beam formation process of resonating the reproduced sound output from the speaker array at a position of one ear of the listener; and a cancellation unit that performs a cancellation process of preventing the reproduced sound output from the speaker array from reaching a position of the other ear of the listener.
Abstract:
An acoustic system includes an audio output device configured to output a sound to a listener being still at least for a predetermined period of time, and an acoustic control device configured to perform signal processing for localizing, at a specific part of the listener, the sound that is output through the audio output device, wherein the audio output device is installed above the specific part of the listener.
Abstract:
An acoustic signal processing device includes: a front signal processor which generates first L and R signals by performing signal processing on a first signal which is a front channel signal; a first adder which generates a fourth signal which is a left channel signal by adding the first L signal and a second signal which is a left channel signal; and a second adder which generates a fifth signal which is a right channel signal by adding the first R signal and a third signal which is a right channel signal. The front signal processor generates the first L and R signals by signal processing in which the first signal is distributed and placed at predetermined positions when the first signal is a dialog signal, and distributed and placed at positions different from the predetermined positions when the first signal is not a dialog signal.
Abstract:
An acoustic device that provides a stereophonic effect to a driver of a mobile object includes: a plurality of speakers (an L channel speaker and an R channel speaker) mounted on a steering wheel that controls a traveling direction of the mobile object; a steering angle detection unit configured to detect a steering angle of the steering wheel; and a signal output unit configured to output a plurality of output signals obtained by performing, on a sound signal, a process relating to the stereophonic effect and depending on the steering angle, respectively to the plurality of speakers.