Abstract:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.
Abstract:
A solid-state imaging device includes: multiple micro lenses, which are disposed in each of a first direction and a second direction orthogonal to the first direction, focus the incident light into the light-receiving surface; with the multiple micro lenses of which the planar shape is a shape including a portion divided by a side extending in the first direction and a side extending in the second direction being disposed arrayed mutually adjacent to each of the first direction and the second direction; and with the multiple micro lenses being formed so that the depth of a groove between micro lenses arrayed in a third direction is deeper than the depth of a groove between micro lenses arrayed in the first direction, and also the curvature of the lens surface in the third direction is higher than the curvature of the lens surface in the first direction.
Abstract:
A solid-state imaging device includes: multiple micro lenses, which are disposed in each of a first direction and a second direction orthogonal to the first direction, focus the incident light into the light-receiving surface; with the multiple micro lenses of which the planar shape is a shape including a portion divided by a side extending in the first direction and a side extending in the second direction being disposed arrayed mutually adjacent to each of the first direction and the second direction; and with the multiple micro lenses being formed so that the depth of a groove between micro lenses arrayed in a third direction is deeper than the depth of a groove between micro lenses arrayed in the first direction, and also the curvature of the lens surface in the third direction is higher than the curvature of the lens surface in the first direction.
Abstract:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.
Abstract:
A solid-state imaging device includes: multiple micro lenses, which are disposed in each of a first direction and a second direction orthogonal to the first direction, focus the incident light into the light-receiving surface; with the multiple micro lenses of which the planar shape is a shape including a portion divided by a side extending in the first direction and a side extending in the second direction being disposed arrayed mutually adjacent to each of the first direction and the second direction; and with the multiple micro lenses being formed so that the depth of a groove between micro lenses arrayed in a third direction is deeper than the depth of a groove between micro lenses arrayed in the first direction, and also the curvature of the lens surface in the third direction is higher than the curvature of the lens surface in the first direction.
Abstract:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.
Abstract:
A solid-state imaging device includes: multiple micro lenses, which are disposed in each of a first direction and a second direction orthogonal to the first direction, focus the incident light into the light-receiving surface; with the multiple micro lenses of which the planar shape is a shape including a portion divided by a side extending in the first direction and a side extending in the second direction being disposed arrayed mutually adjacent to each of the first direction and the second direction; and with the multiple micro lenses being formed so that the depth of a groove between micro lenses arrayed in a third direction is deeper than the depth of a groove between micro lenses arrayed in the first direction, and also the curvature of the lens surface in the third direction is higher than the curvature of the lens surface in the first direction.
Abstract:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.
Abstract:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.
Abstract:
A solid-state imaging device includes: a first lens layer; and a second lens layer, wherein the second lens layer is formed at least at a periphery of each first microlens formed based on the first lens layer, and the second lens layer present at a central portion of each of the first microlenses is thinner than the second lens layer present at the periphery of the first microlens or no second lens layer is present at the central portion of each of the first microlenses.