Abstract:
A Schottky diode may include a semiconductor substrate having first and second opposing surfaces, and a buffer layer over the first surface of the semiconductor substrate. The Schottky diode may include a first doped GaN layer over the buffer layer and having first and second opposing surfaces, the second surface of the first doped GaN layer being adjacent the buffer layer, and a second doped GaN layer over the second surface of the first doped GaN layer and having a dopant concentration level less than a dopant concentration level of the first doped GaN layer. The buffer layer, the first doped GaN layer, and the second doped GaN layer may define an opening. The Schottky diode may include a first metallization layer being coupled to the semiconductor substrate and to the first surface of the first doped GaN layer and being in the opening.
Abstract:
A device includes a diode. The anode of the diode includes first, second, and third areas. The first area partially covers the second area and has a first doping level greater than a second doping level of the second area. The second area partially covers the third area and has the second doping level greater than a third doping level of the third area. A first insulating layer partially overlaps the first and second areas.
Abstract:
A device includes a diode. The anode of the diode includes first, second, and third areas. The first area partially covers the second area and has a forst doping level greater than a second doping level of the second area. The second area partially covers the third area and has the second doping level greater than a third doping level of the third area. A first insulating layer partially overlaps the first and second areas.
Abstract:
A monolithic component includes a field-effect power transistor and at least one first Schottky diode inside and on top of a gallium nitride substrate.
Abstract:
A method is for treating a doped gallium nitride substrate of a first conductivity type, having dislocations emerging on the side of at least one of its surfaces. The method may include: a) forming, where each dislocation emerges, a recess extending into the substrate from the at least one surface; and b) filling the recesses with doped gallium nitride of the second conductivity type.