Abstract:
A phase locked loop includes a voltage-controlled oscillator and a current mirror circuit that supplies a drive current to the voltage-controlled oscillator. The current mirror circuit includes a filter between a bias current generator and current mirror transistor. The filter includes a first and a second switch driven in unison with a small duty cycle.
Abstract:
An area efficient distributed device for integrated voltage regulators comprising at least one filler cell coupled between a pair of PADS on I/O rail of a chip and at least one additional filler cell having small size portion of said device is coupled to said I/O rails for distributing portions of said device on the periphery of said chip. The device is coupled as small size portion on the lower portion of said second filler cell for distributing said device on the periphery of said chip and providing maximal area utilization.
Abstract translation:一种用于集成电压调节器的区域有效的分布式装置,其包括耦合在芯片的I / O轨上的一对PADS与至少一个具有所述装置的小尺寸部分的附加填充单元之间的填充单元耦合到所述I / O 用于在所述芯片的周围分配所述设备的部分的轨道。 该装置作为小尺寸部分耦合在所述第二填充单元的下部,用于将所述装置分布在所述芯片的外围并提供最大的面积利用率。
Abstract:
An electronic circuit is described in which a charge pump-based digital phase locked loop circuit is augmented with additional circuitry to monitor and control noise and power consumption. The additional circuitry includes a comparator and a measurement stage configured to measure and adjust a unity gain bandwidth of the phase locked loop. In one embodiment, the measurement stage includes two frequency-to-current converters and associated current mirrors.
Abstract:
An electronic circuit is described in which a charge pump-based digital phase locked loop circuit is augmented with additional circuitry to monitor and control noise and power consumption. The additional circuitry includes a comparator and a measurement stage configured to measure and adjust a unity gain bandwidth of the phase locked loop. In one embodiment, the measurement stage includes two frequency-to-current converters and associated current mirrors.
Abstract:
A phase lock loop (PLL) circuit incorporates switched capacitive circuitry and feedback circuitry to reduce the time to achieve a lock condition. During a first mode, the frequency of a voltage controlled oscillator (VCO) is used to adjust the control voltage of the VCO to achieve a coarse lock condition. During a second mode, a reference frequency is used to control a charge pump to more precisely adjust the control voltage to achieve fine lock of the PLL. Because the VCO frequency is significantly higher than the reference frequency, the control voltage is varied at a greater rate during the first mode. In some embodiments, the time to achieve lock may be further reduced by initializing the VCO control voltage to a particular voltage so as to reduce the difference between the control voltage at start-up and the control voltage at the beginning of the first mode during coarse lock.
Abstract:
A phase locked loop includes a voltage-controlled oscillator and a current mirror circuit that supplies a drive current to the voltage-controlled oscillator. The current mirror circuit includes a filter between a bias current generator and current mirror transistor. The filter includes a first and a second switch driven in unison with a small duty cycle.