Abstract:
An integrated memory circuit includes at least one memory cell formed by a single transistor whose gate (GR) has a lower face insulated from a channel region by an insulation layer containing a succession of potential wells, which are substantially arranged at a distance from the gate and from the channel region in a plane substantially parallel to the lower face of the gate. The potential wells are capable of containing an electric charge which is confined in the plane and can be controlled to move in the plane towards a first confinement region next to the source region or towards a second confinement region next to the drain region so as to define two memory states for the cell.
Abstract:
There is provided an integrated circuit having active components including junctions formed in a monocrystalline substrate doped locally, and at least one passive component situated above the active components. The integrated circuit includes a first insulating layer separating the active components and abase of the passive component, and a metal terminal for electrically connecting the passive component with at least one of the active components. The metal terminal is formed in the thickness of the first insulating layer and has a contact surface that projects from the limits of a junction of the one active component. In a preferred embodiment, the passive component is a capacitor. Also provided is a method of fabricating an integrated circuit that includes MOS transistors and an onboard memory plane of DRAM cells in a matrix.
Abstract:
Process for fabricating a component, such as a capacitor in an integrated circuit, and integrated component, in which process and component a first electrode is in the form of a cup; a layer made of a dielectric covers at least the wall of the first electrode; a second electrode fills the cup; a first electrical connection via lies above the second electrode; and a second electrical connection via lies laterally with respect to and at a predetermined distance from the first electrode and is connected to the first electrode.