Abstract:
The disclosure relates to integrated circuits and methods including one or more rows of transistors. In an embodiment, an integrated circuit includes a row of bipolar transistors including a plurality of first conduction regions, a second conduction region, and a common base between the first conduction regions and the second conduction region. An insulating trench is in contact with each bipolar transistor of the row of bipolar transistors. A conductive layer is on the insulating trench and the common base between the first conduction regions. A spacer layer is between the conductive layer and the first conduction regions.
Abstract:
An integrated circuit includes an active zone lying above a semiconductor substrate. A cavity borders the active zone and extends, in an insulating zone, as far as into the vicinity of a semiconductor region. An insulating multilayer is provided and an electrically conductive contact extends within the insulating multilayer to emerge onto the active zone and into the cavity. The insulating multilayer includes a first insulating layer covering the active zone outside the contact and lining the walls of the cavity. An additional insulating layer covers the portion of the first insulating layer lining the walls of the cavity. The contact reaches the additional insulating layer in the cavity. An insulating region lies on top of the first insulating layer and the additional insulating layer made from insulating material around the contact.
Abstract:
The disclosure relates to integrated circuits and methods including one or more rows of transistors. In an embodiment, an integrated circuit includes a row of bipolar transistors including a plurality of first conduction regions, a second conduction region, and a common base between the first conduction regions and the second conduction region. An insulating trench is in contact with each bipolar transistor of the row of bipolar transistors. A conductive layer is on the insulating trench and the common base between the first conduction regions. A spacer layer is between the conductive layer and the first conduction regions.
Abstract:
An aspect of the invention is directed to a silicon-on-insulator device including a silicon layer on an insulating layer on a substrate; a raised source and a raised drain on the silicon layer; a gate between the raised source and the raised drain; a first spacer separating the gate from the raised source and substantially covering a first sidewall of the gate; a second spacer separating the gate from the raised drain and substantially covering a second sidewall of the gate; and a low-k layer over the raised source, the raised drain, the gate and each of the first spacer and the second spacer; and a dielectric layer over the low-k layer.
Abstract:
An integrated circuit includes an active zone lying above a semiconductor substrate. A cavity borders the active zone and extends, in an insulating zone, as far as into the vicinity of a semiconductor region. An insulating multilayer is provided and an electrically conductive contact extends within the insulating multilayer to emerge onto the active zone and into the cavity. The insulating multilayer includes a first insulating layer covering the active zone outside the contact and lining the walls of the cavity. An additional insulating layer covers the portion of the first insulating layer lining the walls of the cavity. The contact reaches the additional insulating layer in the cavity. An insulating region lies on top of the first insulating layer and the additional insulating layer made from insulating material around the contact.
Abstract:
An integrated circuit includes an active zone lying above a semiconductor substrate. A cavity borders the active zone and extends, in an insulating zone, as far as into the vicinity of a semiconductor region. An insulating multilayer is provided and an electrically conductive contact extends within the insulating multilayer to emerging onto the active zone and into the cavity. The insulating multilayer includes a first insulating layer covering the active zone outside the contact and lining the walls of the cavity. An additional insulating layer covers the portion of the first insulating layer lining the walls of the cavity. The contact reaches the additional insulating layer in the cavity. An insulating region lies on top of the first insulating layer and the additional insulating layer made from insulating material around the contact.
Abstract:
An integrated circuit includes an active zone lying above a semiconductor substrate. A cavity borders the active zone and extends, in an insulating zone, as far as into the vicinity of a semiconductor region. An insulating multilayer is provide and an electrically conductive contact extends within the insulating multilayer to emerging onto the active zone and into the cavity. The insulating multilayer includes a first insulating layer covering the active zone outside the contact and lining the walls of the cavity. An additional insulating layer covers the portion of the first insulating layer lining the walls of the cavity. The contact reaches the additional insulating layer in the cavity. An insulating region lies on top of the first insulating layer and the additional insulating layer made from insulating material around the contact.
Abstract:
An aspect of the invention is directed to a silicon-on-insulator device including a silicon layer on an insulating layer on a substrate; a raised source and a raised drain on the silicon layer; a gate between the raised source and the raised drain; a first spacer separating the gate from the raised source and substantially covering a first sidewall of the gate; a second spacer separating the gate from the raised drain and substantially covering a second sidewall of the gate; and a low-k layer over the raised source, the raised drain, the gate and each of the first spacer and the second spacer; and a dielectric layer over the low-k layer.