Abstract:
A static random access memory (SRAM) device includes a memory array of a plurality of memory cells, a controller that receives an external clock signal formed by a succession of external pulses and generates an internal clock signal formed by a succession of internal pulses, and a driving circuit that receives the internal clock signal. The controller is operable in a first mode, wherein the controller generates, for each external pulse, a corresponding internal pulse and the controller controls the driving circuit so that the driving circuitry carries out one access to the memory array for each internal pulse. The controller is further operable in a second mode, wherein the controller generates, for each external pulse, a pair of internal pulses, and the controller controls the driving circuitry so that, for each pair of internal pulses, the driving circuitry writes a first data item in a set of memory cells, and then reads the set of memory cells, so as to acquire a second data item.
Abstract:
A static random access memory (SRAM) device includes a memory array of a plurality of memory cells, a controller that receives an external clock signal formed by a succession of external pulses and generates an internal clock signal formed by a succession of internal pulses, and a driving circuit that receives the internal clock signal. The controller is operable in a first mode, wherein the controller generates, for each external pulse, a corresponding internal pulse and the controller controls the driving circuit so that the driving circuitry carries out one access to the memory array for each internal pulse. The controller is further operable in a second mode, wherein the controller generates, for each external pulse, a pair of internal pulses, and the controller controls the driving circuitry so that, for each pair of internal pulses, the driving circuitry writes a first data item in a set of memory cells, and then reads the set of memory cells, so as to acquire a second data item.
Abstract:
A method for testing a memory device. The memory device includes a matrix of memory cells having a plurality of rows and columns; the matrix includes a plurality of rows of operative memory cells each one for storing a variable value and at least one row of auxiliary memory cells each one storing a fixed value. The memory device further includes writing circuitry for writing selected values into the operative memory cells, and reading circuitry for reading the values being stored from the operative or auxiliary memory cells. The method includes reading output values from the row of auxiliary memory cells, determining a malfunctioning of the memory device in response to a missing match of the output values with the fixed values, determining a cause of the malfunctioning according to a pattern of reading errors between the output values and the corresponding fixed values, and providing a signal indicative of the cause of the malfunctioning.