Abstract:
A device for detecting obstacles that is wearable by a subject, for example integrated in an item of footwear. The device includes an ultrasound source for emitting an ultrasound transmission signal and an ultrasound receiver for receiving a corresponding ultrasound signal reflected by an obstacle, a control module for measuring a time of flight between emission of the ultrasound transmission signal and reception of the corresponding ultrasound signal reflected by the obstacle and calculating, on the basis of the aforesaid time of flight, the distance at which the obstacle is located. The device comprises an inertial sensor, in particular an acceleration sensor, designed to measure acceleration of the foot along three axes, and a control module configured for enabling operation of the ultrasound source if the aforesaid acceleration values measured by the inertial sensor respect a given condition for enabling measurement of the time of flight.
Abstract:
The current technique provides an unmanned vehicle that is capable of travelling in the air, on the ground and/or in the water. The driving force of the unmanned vehicle is provided by at least one propelling module that includes a motor, a shaft and a propeller. The propelling module is coupled to a chassis. The chassis includes one or more support elements that each couples to one or more aileron member. An aileron member is configured to tilt with or about the support element to change fluid flux about the aileron member and thus change a position of the propelling force.
Abstract:
A direct current (DC) to DC (DC-DC) converter includes a comparator configured to set a pulse width of a signal pulse, the pulse width corresponding to a voltage level of an output voltage of the DC-DC converter; a digital delay line (DDL) operatively coupled to the comparator, the DDL configured increase the pulse width of the signal pulse by linearly introducing delays to the signal pulse; a multiplexer operatively coupled to the DDL, the multiplexer configured to selectively output a delayed version of the signal pulse; and a logic control circuit operatively coupled to the multiplexer and the DDL, the logic control circuit configured to adaptively adjust a precision of the DC-DC converter in accordance with a duty cycle of the DC-DC converter and a setpoint of the DC-DC converter.
Abstract:
A structural body made of semiconductor material includes an active area housing a drain region, a body region and a source region within the body region. An electrical-isolation trench extends in the structural body to surround the active area. A first PN-junction and a second PN-junction are integrated in the structural body between the active area and the trench, respectively located on opposite sides of the active area. The first and the second PN-junctions form a first diode and a second diode, with each diode having a respective cathode electrically coupled to the drain region of the MOSFET device and a respective anode electrically coupled to the source region of the MOSFET device.
Abstract:
A method of detecting objects includes transmitting toward an object a first acoustic signal including a first set of pulses including a first number of pulses, and checking if a first echo signal resulting from reflection of the first acoustic signal is received with an intensity reaching an echo detection threshold. If the intensity of the first echo signal reaches the echo detection threshold, the distance to the object is calculated as a function of the time delay of the first echo signal. If the intensity of the first echo signal fails to reach the echo detection threshold, one or more further acoustic signals are transmitted including a set of pulses wherein the number of pulses is increased with respect to the number of pulses in said first acoustic signal.
Abstract:
A device for detecting obstacles that is wearable by a subject, for example integrated in an item of footwear. The device includes an ultrasound source for emitting an ultrasound transmission signal and an ultrasound receiver for receiving a corresponding ultrasound signal reflected by an obstacle, a control module for measuring a time of flight between emission of the ultrasound transmission signal and reception of the corresponding ultrasound signal reflected by the obstacle and calculating, on the basis of the aforesaid time of flight, the distance at which the obstacle is located. The device comprises an inertial sensor, in particular an acceleration sensor, designed to measure acceleration of the foot along three axes, and a control module configured for enabling operation of the ultrasound source if the aforesaid acceleration values measured by the inertial sensor respect a given condition for enabling measurement of the time of flight.
Abstract:
A direct current (DC) to DC (DC-DC) converter includes a comparator configured to set a pulse width of a signal pulse, the pulse width corresponding to a voltage level of an output voltage of the DC-DC converter; a digital delay line (DDL) operatively coupled to the comparator, the DDL configured increase the pulse width of the signal pulse by linearly introducing delays to the signal pulse; a multiplexer operatively coupled to the DDL, the multiplexer configured to selectively output a delayed version of the signal pulse; and a logic control circuit operatively coupled to the multiplexer and the DDL, the logic control circuit configured to adaptively adjust a precision of the DC-DC converter in accordance with a duty cycle of the DC-DC converter and a setpoint of the DC-DC converter.
Abstract:
A direct current (DC) to DC (DC-DC) converter includes a comparator setting a pulse width of a signal pulse, the pulse width corresponding to a voltage level of an output voltage of the DC-DC converter; a digital delay line (DDL) operatively coupled to the comparator, the DDL adjusting the pulse width of the signal pulse by linearly introducing delays to the signal pulse; a multiplexer operatively coupled to the DDL, the multiplexer selectively outputting a delayed version of the signal pulse; a phase detector operatively coupled to a system clock and the multiplexer, the phase detector generating a phase error between an output of the multiplexer and the system clock; and a logic control circuit operatively coupled to the multiplexer and the DDL, the logic control circuit adjusting the delay introduced to the signal pulse in accordance with the phase error.