摘要:
A quality-evaluated vitreous silica crucible for pulling silicon single crystal is provided, wherein an inner surface of the vitreous silica crucible has regions where surface defects including brown rings are to be generated when pulling silicon single crystal. The regions are distinguished using an infrared absorption spectrum or a Raman shift of the regions, wherein a position of each region and/or a density of the regions are/is specified.
摘要:
A method for pulling silicon single crystal includes a process of placing a molded body between a susceptor's inner surface and a crucible's outer surface. The molded body is formed based on three-dimensional data of the inner surface shape of the susceptor which can hold the vitreous silica crucible and three-dimensional data of the crucible so as to make the susceptor's central axis and the crucible's central axis substantially aligned when it is placed between the susceptor's inner surface and the crucible's outer surface.
摘要:
A destructive inspection method of a vitreous silica crucible for pulling a silicon single crystal evaluates a crack state of an inner surface of the vitreous silica crucible supported by a graphite susceptor when a load is instantaneously applied to at least one point on the inner surface via an automatic center punch while pushing the tip portion of the automatic center punch against the inner surface. The destructive inspection method can inspect the vitreous silica crucible under conditions as close to the actual conditions of use as possible.
摘要:
A method of manufacturing a vitreous silica crucible includes an inspection method comprising: a measurement step of measuring an infrared absorption spectrum or a Raman shift of a measurement point on an inner surface of the vitreous silica crucible; a determining step of predicting whether a surface defect region is generated or not in the measurement point based on an obtained spectrum to determine a quality of the vitreous silica crucible.
摘要:
An evaluation method of suitable silica powder for forming a bubble-free layer of a vitreous silica crucible for pulling of a silicon single crystal, includes: a process of measuring a porosity between silica particles in the silica powder, a process of melting the silica powder, a process of measuring a bubble content rate of a vitreous silica block obtained by cooling to harden the melted silica powder, and a process of determining whether the silica powder is suitable from the porosity of the silica powder and the bubble content rate of the vitreous silica block.
摘要:
A method of manufacturing a composite crucible includes: supplying mullite material powder to an upper region of a mold, and supplying second silica powder to a lower region provided below the upper region while rotating the mold; supplying third silica powder on an inner surface side of a layer made of the mullite material powder and the second silica powder; heating and fusing the mullite material powder, the second silica powder, and the third silica powder to form an opaque vitreous silica layer provided on the outer surface of the crucible, a transparent vitreous silica layer provided on an inner surface side of the crucible, and a mullite reinforcement layer provided on the outer surface side of an upper end portion of the crucible.
摘要:
A vitreous silica crucible used to pull up silicon single crystal includes: a cylindrical straight body portion, a corner portion formed at a lower end of the straight body portion, and a bottom portion connected with the straight body portion via the corner portion, wherein the vitreous silica crucible further comprises: an opaque outer layer enclosing bubbles therein; and a transparent inner layer from which bubbles are removed, wherein the residual distortion's distribution obtained by measuring the silica glass's inner surface in a non-destructed state has an optical path difference which is 130 nm or less, which residual distortion's distribution is measured using a distortion-measuring apparatus which converts a linearly polarized light into circularly polarized light and then irradiates the crucible's wall.
摘要:
Spatial coordinates of multiple points on an inner surface of a vitreous silica crucible are measured prior to filling raw material in the vitreous silica crucible, and a three-dimensional shape of the inner surface of the vitreous silica crucible using a combination of polygons having vertex coordinates constituted by the respective measured points is specified (S11); a predictive value of an initial liquid surface level of the silicon melt in the vitreous silica crucible is preset (S12); a volume of the silicon melt satisfying the predictive value of the initial liquid surface level is obtained based on the three-dimensional shape of the inner surface of the vitreous silica crucible (S13); a weight of the silicon melt having the volume is obtained (S14); raw material having the weight is filled in the vitreous silica crucible (S15); a dipping control of the seed crystal is performed based on the predictive value of the initial liquid surface level (S17).
摘要:
In an embodiment, a distortion-measuring apparatus for measuring a distortion distribution of an entire vitreous silica crucible in a non-destructive way includes: a light source 11; a first polarizer 12 and a first quarter-wave plate 13 disposed between the light source 11 and an outer surface of a vitreous silica crucible wall; a camera 14 disposed inside of a vitreous silica crucible 1; a camera control mechanism 15 configured to control a photographing direction of the camera 14; a second polarizer 16 and a second quarter-wave plate 17 disposed between the camera 14 and an inner surface of the vitreous silica crucible wall. An optical axis of the second quarter-wave plate 17 inclines 90 degrees with respect to the first quarter-wave plate 13.
摘要:
In an embodiment, a vitreous silica crucible 1 includes a cylindrical straight body portion 10a, a corner portion 10c formed at lower end of the straight body portion 10a, and a bottom portion 10b connected with the straight body portion 10a via the corner portion 10c. Moreover, the vitreous silica crucible 1 includes a bubble-containing opaque layer 11 constituting an outer layer, and a bubble-free transparent layer 12 constituting an inner layer. A boundary surface, between the opaque layer 11 and the transparent layer 12 in at least the straight body portion 10a, forms a periodic wave surface in a vertical direction. The vitreous silica crucible can suppress deformation under high temperature.