摘要:
A cell structure includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode, the cathode being in the form of a sheet, the anode being in the form of a sheet, the solid electrolyte layer being in the form of a sheet, the solid electrolyte layer being disposed on the anode, the cathode being disposed on the solid electrolyte layer, the cathode having a resistance Rc, the anode and the solid electrolyte layer having a resistance Ra, the resistance Rc and the resistance Ra satisfying a relationship of Rc/Ra≥0.3, the cathode including a first metal oxide having a perovskite crystal structure, the cathode having a thickness larger than 15 μm and equal to or less than 30 μm.
摘要:
A porous metal body includes a three-dimensional mesh-like structure consisting of a skeleton, the porous metal body having a flat plate-like external form including a pair of main surfaces and end surfaces that connect the pair of main surfaces to each other, in which the skeleton includes a main metal layer consisting of nickel or a nickel alloy, and an oxide layer on a surface of the main metal layer, in which the oxide layer is not arranged on portions of the surface of the main metal layer included in the pair of main surfaces of the porous metal body.
摘要:
Provided are a membrane electrode assembly, including a solid electrolyte layer, an anode layer provided on one side of the solid electrolyte layer, and a cathode layer provided on the other side of the solid electrolyte layer, the anode layer being stacked on the solid electrolyte layer to be pressed thereagainst, the anode layer including a porous anode member having electrical conductivity; and a method for manufacturing the same.
摘要:
A solid-oxide-electrolysis-cell-type hydrogen production apparatus includes a cell structure including a first electrode, a second electrode, and an electrolyte layer, a gas diffusion layer disposed adjacent to the first electrode, and a gas channel plate disposed adjacent to the gas diffusion layer, in which the gas diffusion layer is formed of a porous metal body having a three-dimensional mesh-like skeleton, the gas channel plate includes a first region including a first channel, a second region including a second channel, and a third region including a third channel, the first channel includes a slit extending from the center of the gas channel plate toward its outer edge at the boundary surface between the first region and the second region, letting the total area of the first channel at the boundary surface be a first opening area S1, letting the total area of the second channel at the boundary surface between the second region and the third region be a second opening area S2, and letting the total area of the third channel at the boundary surface between the third region and the gas diffusion layer be a third opening area S3, the relationship S2
摘要:
A porous metal body has a three-dimensional mesh-like structure skeleton and containing at least nickel and tin. The nickel content is 50 mass % or more, and the tin content is 5 mass % or more and 25 mass % or less. The porous metal body has a thickness of 0.10 mm or more and 0.50 mm or less.
摘要:
A method for producing a cell structure includes: a step of firing a laminated body of a layer containing an anode material and a layer containing a solid electrolyte material, to obtain a joined body of an anode and a solid electrolyte layer; a step of laminating a layer containing a cathode material on a surface of the solid electrolyte layer, and firing the obtained laminated body to obtain a cathode. The anode material contains a metal oxide Ma1 and a nickel compound. The metal oxide Ma1 is a metal oxide having a perovskite structure represented by A1x1B11-y1M1y1O3-δ (wherein: A1 is at least one of Ba, Ca, and Sr; B1 is at least one of Ce and Zr; M1 is at least one of Y, Yb, Er, Ho, Tm, Gd, In, and Sc; 0.85≤x1≤0.99; 0
摘要:
A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body arranged to oppose at least one of the cathode and the anode; and an interconnector arranged to oppose the first porous metal body and having a gas supply port and a gas discharge port formed therein. The first porous metal body includes a porous metal body S that opposes the gas supply port and has a three-dimensional mesh-like skeleton, and a porous metal body H that has a three-dimensional mesh-like skeleton and is other than the porous metal body S. A porosity Ps of the porous metal body S and a porosity Ph of the porous metal body H satisfy a relationship: Ps
摘要:
Provided is a porous current collector which is used for a fuel electrode and has a high gas reforming function and high durability. A porous current collector 9 is provided adjacent to a fuel electrode 4 of a fuel cell 101 that includes a solid electrolyte layer 2, the fuel electrode 4 disposed on one side of the solid electrolyte layer, and an air electrode 3 disposed on the other side. The porous current collector includes a porous metal body 1 and a first catalyst 20. The porous metal body has an alloy layer 12a at least on a surface thereof, the alloy layer containing nickel (Ni) and tin (Sn). The first catalyst, which is in the form of particles, is supported on a surface of the alloy layer, the surface facing pores of the porous metal body, and is capable of processing a carbon component contained in a fuel gas that flows inside the pores.
摘要:
The present invention inexpensively provides an electrode material for a fuel electrode, the electrode material having CO2 resistance and being capable of forming a fuel cell having high electricity generation performance. An electrode material for a fuel electrode, the electrode material constituting a fuel electrode of a fuel cell including a proton-conductive solid electrolyte layer, includes a perovskite-type solid electrolyte component and a nickel (Ni) catalyst component, in which the solid electrolyte component includes a barium component, a zirconium component, a cerium component, and a yttrium component, and the mixture ratio of the zirconium component to the cerium component in the solid electrolyte component is set to be 1:7 to 7:1 in terms of molar ratio.
摘要:
There is provided a composite material for a fuel cell, in which in the case where an electrolyte-anode laminate is co-fired, the composite material is capable of inhibiting a decrease in the ion conduction performance of a solid electrolyte layer to enhance the power generation performance of the fuel cell. A composite material 1 for a fuel cell includes a solid electrolyte layer 3 and an anode layer 2 stacked on the solid electrolyte layer, in which the solid electrolyte layer is composed of an ionic conductor in which the A-site of a perovskite structure is occupied by at least one of barium (Ba) and strontium (Sr) and tetravalent cations in the B-sites are partially replaced with a trivalent rare-earth element, the anode layer contains an electrolyte component having the same composition as the solid electrolyte layer, a nickel (Ni) catalyst, and an additive containing a rare-earth element, the additive being located at least at an interfacial portion with the solid electrolyte layer.