Abstract:
A metal porous body includes: a metal framework; and a separation wall formed in one piece with the metal framework, the separation wall being composed of the same material as a material of the metal framework. A plurality of cells each having a polyhedral shape exist inside the metal porous body. A side of the polyhedral shape is constituted of the metal framework. A location in which an opening of a cell of the plurality of cells is closed by the separation wall exists inside the metal porous body, the opening being defined by a side of a polyhedral shape of the cell.
Abstract:
The present disclosure provides a flat metal sheet having a principal surface located on one side along a thickness direction, a plurality of struts, and a node part where end portions of the plurality of struts are connected to one another, wherein the strut and the node part form a mesh structure, and the plurality of the struts are in close contact with each other, and a plurality of through holes penetrating the principal surface in the thickness direction.
Abstract:
A composite material of the present disclosure contains a plurality of diamond particles, copper, and at least one first element selected from the group consisting of silicon, chromium, cobalt, nickel, molybdenum, titanium, vanadium, niobium, tantalum tungsten and aluminum, wherein the content rate of the first element based on the total mass of the copper and the first element is 50 ppm or higher and 2,000 ppm or lower.
Abstract:
A porous body including a framework having a three-dimensional network structure, the framework having a body including nickel, cobalt, a first element and a second element as constituent elements, the cobalt having a proportion in mass of 0.2 or more and 0.8 or less relative to a total mass of the nickel and the cobalt, the first element including of at least one element selected from the group including of boron, iron and calcium, the second element including of at least one element selected from the group consisting of sodium, magnesium, aluminum, silicon, potassium, titanium, chromium, copper, zinc and tin, the first and second elements together having a proportion in mass of 5 ppm or more and 50,000 ppm or less in total relative to the body of the framework.
Abstract:
A porous body comprises a framework having a three-dimensional network structure, the framework having a body including nickel and cobalt as constituent elements, the body of the framework including the cobalt at a proportion in mass of 0.2 or more and 0.8 or less relative to a total mass of the nickel and the cobalt.
Abstract:
A cell structure includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode, the cathode being in the form of a sheet, the anode being in the form of a sheet, the solid electrolyte layer being in the form of a sheet, the solid electrolyte layer being disposed on the anode, the cathode being disposed on the solid electrolyte layer, the cathode having a resistance Rc, the anode and the solid electrolyte layer having a resistance Ra, the resistance Rc and the resistance Ra satisfying a relationship of Rc/Ra≥0.3, the cathode including a first metal oxide having a perovskite crystal structure, the cathode having a thickness larger than 15 μm and equal to or less than 30 μm.
Abstract:
A method for separating metal components from a treatment material containing a silicate and metal elements includes: a reaction step of reacting the treatment material and a molten alkali hydroxide in which bubbles due to water vapor derived from water are generated by heating a hydroxide of an alkali metal or an alkaline-earth metal and the water in a state where the hydroxide and the water coexist, to obtain a reaction product; and a first precipitation step of dissolving the reaction product of the treatment material and the molten alkali hydroxide after the reaction step in water, thereby generating a precipitate containing the metal elements.
Abstract:
A porous metal body includes a three-dimensional mesh-like structure consisting of a skeleton, the porous metal body having a flat plate-like external form including a pair of main surfaces and end surfaces that connect the pair of main surfaces to each other, in which the skeleton includes a main metal layer consisting of nickel or a nickel alloy, and an oxide layer on a surface of the main metal layer, in which the oxide layer is not arranged on portions of the surface of the main metal layer included in the pair of main surfaces of the porous metal body.
Abstract:
Provided are a membrane electrode assembly, including a solid electrolyte layer, an anode layer provided on one side of the solid electrolyte layer, and a cathode layer provided on the other side of the solid electrolyte layer, the anode layer being stacked on the solid electrolyte layer to be pressed thereagainst, the anode layer including a porous anode member having electrical conductivity; and a method for manufacturing the same.
Abstract:
An electrode group includes a plurality of first electrodes including sheet-shaped first current collectors and a first active material carried on the first current collectors, a plurality of second electrodes including sheet-shaped second current collectors and a second active material carried on the second current collectors, and sheet-shaped separators disposed between the first electrodes and the second electrodes. The first electrodes and the second electrodes are alternately stacked with the separators disposed between the first electrodes and the second electrodes, and the first current collectors each include a first metal porous body.