Abstract:
A display apparatus includes: a plurality of pixel blocks, each pixel block of the plurality of pixel blocks including a first pixel electrode connected to a first switching element and a second pixel electrode connected to a second switching element; gate lines which extend along a first direction and include a first gate line connected to the first switching element and a second gate line connected to the second switching element; and data lines which extend along a second direction intersecting the first direction. A gate voltage is applied to the first gate line before the second gate line, and the first pixel electrode of each of the pixel blocks displays a same color.
Abstract:
An array substrate of an LCD having: a gate line formed along a first direction; a data line formed along a second direction crossing the first direction; first and second pixel electrodes spaced apart from each other; a thin-film transistor includes a gate electrode connected to the gate line; a source electrode connected to the data line and partially overlapping the second pixel electrode; and a drain electrode connected to the first pixel electrode spaced apart from the second pixel electrode along the second direction. The source electrode or the gate electrode overlaps the second pixel electrode but the drain electrode does not overlap the second pixel electrode. Electrical coupling between the first and second pixel electrodes are avoided with such configuration.
Abstract:
A gate driving circuit and a display device having the same, a pull-up unit pulls up a current gate signal by using a first clock signal during a first period of one frame. A pull-up driver coupled to the pull-up unit receives a carry signal from one of the previous stages to turn on the pull-up unit. A pull-up unit receives a gate signal from one of the next stages, discharges the current gate signal to an off voltage level, and turns off the pull-up unit. A holder holds the current gate signal at the voltage level. An inverter turns on/off the holder in response to a first clock signal. A ripple preventer has a source and a gate coupled in common to an output terminal of the pull-up unit and a drain coupled to an input terminal of the inverter, and includes a ripple preventing diode for preventing a ripple from being applied to the inverter.
Abstract:
Each stage of a gate driver includes a controlling part which increases an electric potential of a boosting line in response to a carry signal of a previous stage and decreases the electric potential of the boosting line in response to the carry signal of a next stage, a first output part which turns on in response to the increased electric potential of the boosting line and receiving a clock signal to output a gate signal of a present stage, and a second output part which turns on in response to the increased electric potential of the boosting line and receiving the clock signal to output the carry signal of the present stage. The boosting line of the present stage is disposed adjacent to a gate line which is connected to one of next stages following the present stage.
Abstract:
An array substrate of an LCD having: a gate line formed along a first direction;a data line formed along a second direction crossing the first direction;first and second pixel electrodes spaced apart from each other;a thin-film transistor includes a gate electrode connected to the gate line; a source electrode connected to the data line and partially overlapping the second pixel electrode; and a drain electrode connected to the first pixel electrode spaced apart from the second pixel electrode along the second direction. The source electrode or the gate electrode overlaps the second pixel electrode but the drain electrode does not overlap the second pixel electrode. Electrical coupling between the first and second pixel electrodes are avoided with such configuration.
Abstract:
A transistor and a liquid crystal display device having the same are provided. The transistor includes a first gate electrode disposed on a base substrate; a gate insulating layer disposed on the first gate electrode; a semiconductor layer disposed on the gate insulating layer, and including a channel area; a source electrode and a drain electrode connected to both ends of the semiconductor layer; a passivation layer configured to cover the semiconductor layer, the source electrode, and the drain electrode; and a second gate electrode disposed on the passivation layer, and partially overlapping the channel area in a direction from the drain electrode toward the source electrode.