Abstract:
A gate driver circuit includes an N-th stage (‘N’ is a natural number) The N-th stage (‘N’ is a natural number) includes a pull-up part configured to output an N-th gate signal using a first clock signal in response to a node signal of the control node, a carry part configured to output an N-th carry signal using the first clock signal in response to the node signal of the control node, an first output part connected to an n-th gate line and configured to output an n-th gate signal using the N-th gate signal in response to a second clock signal having a period shorter than the first clock signal (‘n’ is a natural number), and a second output part connected to an (n+1)-th gate line and configured to output an (n+1)-th gate signal using the N-th gate signal in response to an second inversion clock signal having a phase opposite to the second clock signal.
Abstract:
An organic light emitting display device includes a plurality of pixel columns, a first data wiring, a second data wiring, and a power supply wiring. The pixel columns include pixels repeatedly arranged in a first direction, and the pixel columns are repeatedly arranged in a second direction. The first and second directions are substantially perpendicular to each other. The first data wiring extends in the first direction and is connected to the pixels in an even row. The second data wiring extends in the first direction and are connected to the pixels in an odd row. The power supply wiring extends in the first direction between the first and second data wirings.
Abstract:
A gate driving circuit including a plurality of gate driving units respectively coupled to a plurality of gate lines, each of the plurality of gate driving units includes a carry unit configured to output a carry signal, a pull-up unit configured to output a gate signal, and a pull-down unit configured to pull down an output node of the gate signal. The frequency control signal is configured to controlling a frequency of outputting the gate signal
Abstract:
A method of driving a display panel includes receiving an input image data, based on which the display panel displays an image, outputting a first image data during N frames corresponding to a first reference time and outputting a second image data during M frames corresponding to a second reference time based on a inversion signal, where N and M are natural number, the first image data has a first polarity equal to a polarity of the input image data, and the second image data has a second polarity inverted from the polarity of the input image data, and skipping a first frame of the first image data and a first frame of the second image data based on the inversion signal.
Abstract:
A gate driving circuit and a display apparatus having the gate driving circuit, in which the gate driving circuit includes a voltage adjusting part using a low clock signal to increase the reliability of the gate driving circuit, thereby extending the lifetime of the gate driving circuit.
Abstract:
A gate driver, including multiple stages of gate driving circuits, wherein each stage of the gate driving circuits includes an input part configured to generate a Q node signal in response to a carry signal of one of previous stages and a clock signal, the Q node signal being applied to Q node, an output part configured to output a gate output signal to a gate output terminal in response to the Q node signal, and a charge sharing part connected to the gate output terminal of a present stage and a gate output terminal of one of next stages, the charge sharing part configured to operate charge-sharing between the gate output signal of the present stage and a gate output signal of one of the next stages in response to a select signal.
Abstract:
A display device includes: a first switching element which transmits a first data voltage; a second switching element which transmits a second data voltage; a driving transistor connected to the first switching element and the second switching element, where the driving transistor is driven based on the first data voltage and the second data voltage; and an organic light emitting diode connected to the driving transistor, where the organic light emitting diode emits light based on an output of the driving transistor, and a driving method thereof.
Abstract:
A touch screen panel includes a unit pixel and a light sensing part. The unit pixel is connected to an N-th gate line and an M-th data line. The light sensing part is adjacent to the unit pixel. The light sensing part includes a first sensing switching element and a second sensing switching element. The first sensing switching element includes a gate electrode connected to the N-th gate line, a drain electrode connected to a P-th read out line and a source electrode connected to a first node. The second sensing switching element includes a gate electrode to which a first voltage is applied, a drain electrode connected to the first node and a source electrode connected to an X-th gate line. N, M, P and X are positive integers. Thus, an aperture ratio of the touch screen panel can be improved.