Abstract:
A method of driving a liquid crystal display panel is provided. The liquid crystal display panel includes: a liquid crystal display pixel including a liquid crystal structure including a pixel electrode, a liquid crystal layer, and a common electrode; a switching transistor connected between the pixel electrode of the liquid crystal structure and a data-line; and a storage capacitor connected to the pixel electrode of the liquid crystal structure. The method includes: calculating an accumulated driving time of the liquid crystal display panel by accumulating a driving time of the liquid crystal display panel; determining whether or not the accumulated driving time has reached a deterioration reference time; and when the accumulated driving time is determined to have reached the deterioration reference time, changing a gate-off voltage applied to a gate terminal of the switching transistor and a common voltage applied to the common electrode.
Abstract:
A display device includes an image analyzing part which determines whether current frame image data includes a crosstalk pattern, and a gamma voltage generator which generates current frame gamma data by applying the asymmetric gamma when the current frame image data do not include the crosstalk pattern, and generates the current frame gamma data by applying a symmetric gamma when the current frame image data includes the crosstalk pattern. The positive polarity and negative polarity data voltages of the asymmetric gamma are asymmetric with each other for each of the grayscales, and the positive polarity and negative polarity data voltages of the symmetric gamma are symmetric with each other for each of the grayscales.
Abstract:
A display device includes a display panel including a plurality of pixels, a voltage generator which generates a gate on voltage having a first voltage level that satisfies a target charging ratio of a pixel of the plurality of pixels, a voltage controller which receives an image signal and generates a voltage control signal when the image signal includes a predetermined reference pattern, a gate driver which generates a gate signal provided to the plurality of pixels based on the gate on voltage, a data driver which generates a data signal provided to the of the plurality of pixels based on the image signal, and a timing controller which generates control signals that control the gate driver and the data driver. The voltage generator changes the gate on voltage to have a second voltage level lower than the first voltage level based on the voltage control signal.
Abstract:
A gate driver includes a gate signal generating part, a switching part and a switching controlling part. The gate signal generating part is configured to generate a gate signal including a precharge time and a normal charge time using a compensated gate on voltage and a gate off voltage. The switching part is disposed between the gate signal generating part and a gate line. The switching part is configured to apply a compensated gate signal to the gate line. The switching controlling part is configured to generate a switching control signal for controlling an operation of the switching part.
Abstract:
A display device and a driving method is disclosed. The driving method includes receiving an image signal for one frame for one pixel, converting the image signal into at least two data voltages according to at least two gamma curves, applying a first gate signal and a second gate signal to a plurality of gate lines respectively connected to a plurality of subpixels included in one pixel during the frame. The method further includes applying the at least two data voltages to the plurality of subpixels during the frame. A gamma curve for the data voltage applied to one subpixel among the plurality of subpixels includes the at least two different gamma curves and is changed with a period of a first time.
Abstract:
A display apparatus includes pixels each including first and second sub-pixels having different transmittances from each other under a same gray scale, gate lines commonly connected to the first and second sub-pixels to apply a gate signal to the first and second sub-pixels, a first data line applying a first data signal to one of the first and second sub-pixels, and a second data line applying a second data signal to the other one of the first and second sub-pixels. The first sub-pixel has the transmittance lower than the transmittance of the second sub-pixel, and the second sub-pixel connected to an i-th gate line of the gate lines is disposed between the first sub-pixel connected to the i-th gate line and the first sub-pixel connected to an (i+1)th gate line of the gate lines.