Abstract:
A display device is provided. The display device may include a first substrate, a first set of light emitting elements, and a second set of light emitting elements. The first substrate may include a first set of holes. Each hole of the first set of holes may extend through the first substrate. Each of the first set of light emitting elements and the second set of light emitting elements may overlap the first substrate. The first set of holes may be positioned between the first set of light emitting elements and the second set of light emitting elements in a plan view of the display device.
Abstract:
A display device includes: a light-emitting substrate including a base substrate having a non-display area and a display area that surrounds the non-display area; an input sensing unit disposed on the light-emitting substrate; and a hole penetrating front and rear surfaces of each of the light-emitting substrate and the input sensing unit, wherein the light-emitting substrate includes a plurality of recesses, the non-display area includes a hole area which overlaps with the hole, a recess area in which the plurality of recesses are disposed and surrounds the hole area, and a peripheral area which surrounds the recess area, and the input sensing unit includes a plurality of first sensor members overlapping the display area and a first connector connecting the first sensor members and overlapping the groove area.
Abstract:
A display device may include the following elements: a first substrate; a first polarizer; a second substrate overlapping the first substrate and overlapping the first polarizer; and a polarization structure positioned inside the second substrate, comprising a first polarization layer, and comprising a second polarization layer. The first polarization layer may be narrower than the second substrate in a first direction and may be positioned farther from or closer to the first polarizer than the second polarization layer. The second polarization layer may be narrower than the second substrate in the first direction.
Abstract:
An optical member including a light guide plate, a low refractive layer disposed on an upper surface of the light guide plate and having a lower refractive index than the light guide plate, a wavelength conversion layer disposed on the low refractive layer, a passivation layer disposed on the wavelength conversion layer and covering a side surface of the wavelength conversion layer and a side surface of the low refractive layer, and an optical pattern formed on a lower surface of the light guide plate.
Abstract:
A liquid crystal display includes: a first insulation substrate; a first gate conductor disposed on the first insulation substrate and in a same layer as a gate line and a second gate conductor disposed on the first insulation substrate and in the same layer as the gate line; a gate insulating layer disposed on the first gate conductor and the second gate conductor; a data conductor disposed on the gate insulating layer and in a same layer as a data line; a thin film transistor disposed on the first insulation substrate; a first spacer disposed on the first insulation substrate; and a second spacer disposed on the first insulation substrate, where heights or widths of the first and second spacers are different from each other and having different heights or widths, and the second spacer overlaps the first gate conductor and the second gate conductor.
Abstract:
A thin film transistor display panel includes a gate electrode on a substrate; a gate insulating layer on the substrate and the gate electrode; a planarization layer on the gate insulating layer and at opposing sides of the gate electrode, where the planarization layer exposes the gate insulating layer; a semiconductor layer on the gate insulating layer; and a source electrode and a drain electrode on the semiconductor layer and spaced apart from each other.
Abstract:
A thin film transistor display panel includes a gate electrode on a substrate; a gate insulating layer on the substrate and the gate electrode; a planarization layer on the gate insulating layer and at opposing sides of the gate electrode, where the planarization layer exposes the gate insulating layer; a semiconductor layer on the gate insulating layer; and a source electrode and a drain electrode on the semiconductor layer and spaced apart from each other.
Abstract:
A manufacturing method of a window includes: radiating a laser to a glass; immersing a laser-irradiated glass in a KOH solution to form a groove in the glass and to perform a primary reinforcement on the glass; masking the groove of a primarily reinforced glass; and performing a secondary reinforcement on a masked glass.
Abstract:
A display device includes a first pixel and a second pixel adjacent to each other in a first direction, first voltage wires disposed in the first pixel and the second pixel in a second direction, a second wire disposed along a boundary between the first pixel and the second pixel in the second direction, first electrodes disposed between the first voltage wires and the second wire in the first pixel an the second pixel, a second electrode disposed between and spaced apart from the first electrodes in the first pixel and the second pixel, and light-emitting elements disposed at each of the first pixel and the second pixel and disposed on the first electrodes and the second electrode, wherein the first voltage wires, the first electrodes, and the light-emitting elements are symmetric with respect to the second wire.
Abstract:
The disclosure relates to a display device and a method of driving the same. The display device includes: a display panel which displays an image in a plurality of pixel areas; a timing controller which supplies a control signal for controlling a display position, a display shape, a display size and the number of at least one touch bar; and a data driver which supplies a data signal to display the at least one touch bar at the display position in response to the control signal.