Abstract:
A substrate including a gate line and a gate electrode disposed on a substrate, an oxide semiconductor layer pattern overlapping the gate electrode, a gate insulating layer disposed between the gate electrode and the oxide semiconductor layer pattern, a data line intersecting the gate line, a source electrode electrically connected to the oxide semiconductor layer pattern, a drain electrode electrically connected to the oxide semiconductor layer, the drain electrode spaced apart from the source electrode, and an insulating pattern including a first portion, which is disposed between the gate line and the data line and at least partially overlaps with both of the gate line and the data line.
Abstract:
A method of manufacturing a thin film transistor (TFT) array substrate includes forming a gate line and a gate electrode on a substrate, forming a gate-insulating layer and an oxide semiconductor layer on the gate line and the gate electrode, forming etch stop patterns at a thin-film transistor area and an area where the gate line and the data line overlap each other, forming a data conductor on the oxide semiconductor layer and the etch stop patterns, the data conductor comprising a source electrode and a drain electrode that constitute a TFT together with the gate electrode, and forming a data line extending in a direction intersecting the gate line.
Abstract:
A substrate including gate wirings including gate line and a gate electrode disposed on the substrate, a storage line disposed on the same layer as the gate wirings, a gate insulating layer disposed on the gate wirings and the storage line, an oxide semiconductor layer pattern disposed on the gate insulating layer, data wirings including a data line crossing the gate line, a source electrode disposed on one side of the oxide semiconductor layer pattern, and a drain electrode disposed on another side of the oxide semiconductor layer, and an etch stopper including a first etch stopper portion disposed between the storage line and the data line and partially overlapping both the data line and the storage line.
Abstract:
The present disclosure relates to a thin film transistor and a manufacturing method thereof, and the thin film transistor according to an embodiment includes: a substrate; a buffer layer positioned on the substrate and defining a trench on an upper surface thereof; a semiconductor positioned in the trench of the buffer layer; a gate electrode overlapping the semiconductor in a plan view; and a source electrode and a drain electrode, which are connected to the semiconductor.
Abstract:
A substrate including a first signal line and a first electrode disposed on the substrate, an oxide semiconductor layer pattern overlapping the first electrode, an insulating layer disposed between the first electrode and the oxide semiconductor layer pattern, a second signal line intersecting the first signal line, a second electrode electrically connected to the oxide semiconductor layer pattern, a third electrode electrically connected to the oxide semiconductor layer pattern and spaced apart from the second electrode, and an insulator comprising a first portion disposed between the first signal line and the second signal line, and at least partially overlapping with both of the first signal line and the second signal line.
Abstract:
A substrate including gate wirings including a gate line and a gate electrode disposed on a substrate, an oxide semiconductor layer pattern overlapping the gate electrode, a gate insulating layer disposed between the gate wirings and the oxide semiconductor layer pattern, data wirings including a data line crossing the gate line, a source electrode connected to one side of the oxide semiconductor layer pattern, and a drain electrode connected to another side of the oxide semiconductor layer, and an insulating pattern including a first portion which is disposed between the gate line and the data line and at least partially overlaps with both of the gate line and the data line.
Abstract:
A substrate including a gate line and a first electrode disposed on the substrate, an oxide semiconductor layer pattern overlapping the first electrode, an insulating layer disposed between the first electrode and the oxide semiconductor layer pattern, a data line intersecting the gate line, a second electrode electrically connected to the oxide semiconductor layer pattern, a third electrode electrically connected to the oxide semiconductor layer, the third electrode spaced apart from the second electrode, and an insulating pattern including a first portion which is disposed between the gate line and the data line and at least partially overlaps with both of the gate line and the data line.
Abstract:
A display substrate is provided. The display substrate includes a gate interconnection disposed on an insulating substrate, an oxide semiconductor pattern disposed on the gate interconnection and including an oxide semiconductor, and a data interconnection disposed on the oxide semiconductor pattern to interconnect the gate interconnection. The oxide semiconductor pattern includes a first oxide semiconductor pattern having a first oxide and a first element and a second oxide semiconductor pattern having a second oxide.