Abstract:
A mask for etching a target layer includes a mask substrate. A phase inversion layer is disposed to correspond to a non-etched area of a pattern target layer. The phase inversion layer is configured to generate inverted light by inverting a phase of incident light and to transmit the inverted light to the non-etched area of a pattern target layer. An inversion offset part is disposed in a center part of the phase inversion layer. The inversion offset part is configured to generate offset light causing destructive interference with the inverted light in the non-etched area and to provide the offset light to the non-etched area.
Abstract:
A display device includes a first substrate layer having a first, second, and third through holes spaced apart from each other; a second substrate layer having a fourth through hole; a first intermediate conductive layer having a first exposed portion exposed through the first through hole, and a second exposed portion exposed through the second through hole; a second intermediate conductive layer having a third exposed portion exposed through the third through hole; a wiring on the second substrate layer and electrically connected to the second intermediate conductive layer through the fourth through hole; a first electronic device on the first substrate layer and electrically connected to the first exposed portion; and a second electronic device on the first substrate layer and electrically connected to the second exposed portion and the third exposed portion.
Abstract:
A method of forming a pattern includes: preparing a target substrate including a photoresist layer on a base substrate; aligning a phase shift mask to the target substrate, the phase shift mask including a mask substrate comparted into a first region including a first sub region and second sub regions at sides of the first sub region, and second regions at sides of the first region, the phase shift mask including a phase shift layer on the mask substrate corresponding to the first region; fully exposing the photoresist layer at the first sub region and the second regions by utilizing the phase shift mask; and removing the photoresist layer at the first sub region and the second regions to form first and second photoresist patterns corresponding to the second sub regions. Transmittance of the phase shift layer is selected to fully expose the photoresist layer in the first sub region.
Abstract:
A display device includes a base layer, a first electrode on the base layer, a pixel defining layer on the base layer, the pixel defining layer including a display opening exposing the first electrode, a light emitting pattern on the first electrode, a second electrode on the light emitting pattern, a division pattern on the second electrode, the division pattern including a division opening overlapping the display opening, and a color filter in the division opening. The second electrode includes an electrode opening which overlaps the division opening and is spaced apart from the display opening.
Abstract:
A display apparatus includes a display panel including an opening area through which light passes, a non-display area including an opening peripheral area that is around a periphery of the opening area, and a display area including at least one pixel, the display area being around a periphery of the opening peripheral area, an optical film layer disposed on the display panel, and a cover window disposed on the optical film layer. The display panel includes a base substrate, a light emitting structure disposed on the base substrate, a planarization insulating layer disposed on the substrate in the opening peripheral area, and a light blocking pattern disposed on the planarization insulating layer in the opening peripheral area.
Abstract:
Provided is an organic light-emitting display apparatus including a substrate including a black pigment; a pixel electrode above the substrate; a pixel defining layer above the pixel electrode and having an opening for exposing at least a portion of the pixel electrode; an intermediate layer above the pixel electrode and including an emission layer (EML); and an opposite electrode above the intermediate layer.
Abstract:
An organic light-emitting display and a method of manufacturing the same are provided. An organic light-emitting display includes: a substrate including a light-emission region and a non-light-emission region around the light-emission region; a display device on the light-emission region of the substrate; and an encapsulation member on the display device. The encapsulation member includes a light-shielding member including a first light-shielding layer and a second light-shielding layer, the first light-shielding layer being in a region corresponding to the non-light-emission region, and the second light-shielding layer being on the first light-shielding layer; and a color conversion member in a region corresponding to the light-emission region.
Abstract:
A method of forming a pattern includes: preparing a target substrate including a photoresist layer on a base substrate; aligning a phase shift mask to the target substrate, the phase shift mask including a mask substrate comparted into a first region including a first sub region and second sub regions at sides of the first sub region, and second regions at sides of the first region, the phase shift mask including a phase shift layer on the mask substrate corresponding to the first region; fully exposing the photoresist layer at the first sub region and the second regions by utilizing the phase shift mask; and removing the photoresist layer at the first sub region and the second regions to form first and second photoresist patterns corresponding to the second sub regions. Transmittance of the phase shift layer is selected to fully expose the photoresist layer in the first sub region.
Abstract:
A display apparatus includes a display panel in which a display area to display an image and a non-display area adjacent to the display area are defined, and in which a central area and a peripheral area in a periphery of the central area are defined in the display area, a touch sensor on the display panel, the touch sensor including a touch electrode layer, and a black matrix on the display panel. The black matrix includes a first black matrix in the central area and a second black matrix in the peripheral area. The second black matrix is on layer of the display panel that is higher than the first black matrix.
Abstract:
An organic light emitting display (OLED) device includes a substrate, a semiconductor element on the substrate, a planarization layer on the semiconductor, and a light emitting structure on the planarization layer. The planarization layer includes a contact hole exposing a portion of the semiconductor and a plurality of grooves surrounding the contact hole. The light emitting structure is electrically connected to the semiconductor element via the contact hole.