Abstract:
A display device includes a lower display panel, an upper display panel facing the lower display panel, a metal oxide layer surrounding outermost surfaces of the upper display panel and the lower display panel, and a barrier layer surrounding the metal oxide layer. The barrier layer includes a self-assembled monolayer.
Abstract:
A display device includes a lower display panel, an upper display panel facing the lower display panel, a metal oxide layer surrounding outermost surfaces of the upper display panel and the lower display panel, and a barrier layer surrounding the metal oxide layer. The barrier layer includes a self-assembled monolayer.
Abstract:
A method of manufacturing a metal nanowire electrode, the method including: forming a plurality of metal nanowires on a preliminary substrate; forming a metal nanowire layer by chemically reducing the plurality of metal nanowires; separating the metal nanowire layer from the preliminary substrate; transferring the separated metal nanowire layer to a surface of a carrier substrate, wherein the surface of the carrier substrate comprises a hydrophobic treatment; forming an adhesive pattern on a target substrate; and forming the metal nanowire electrode by transferring the separated metal nanowire layer to the target substrate.
Abstract:
A touch panel, a display device having the same, and a method of manufacturing the touch panel are disclosed. In one aspect, the touch panel includes a base substrate and a first sensing portion extending in a first direction and formed over the base substrate. The first sensing portion including a plurality of first fine lines defining a plurality of spaces therebetween. The touch panel also includes a second sensing portion extending in a second direction crossing the first direction and formed over the base substrate and a first insulating layer covering the first fine lines. The first insulating layer defines a plurality of openings therein corresponding to the spaces between the first fine lines. The second sensing portion crosses the first sensing portion with the first insulating layer interposed therebetween.
Abstract:
A display device includes a display panel including a transistor and a backlight unit providing light to the display panel. The transistor includes a transparent substrate that the backlight unit faces. A gate electrode having a first width is disposed on the transparent substrate. A gate insulating layer, having a barrier layer, is disposed on the gate electrode and the transparent substrate. A semiconductor layer is disposed on the gate insulating layer. The semiconductor layer has a second width greater than the first width.
Abstract:
A display device includes: a first substrate; a photo transistor on the first substrate; and a switching transistor connected to the photo transistor. The photo transistor includes a light blocking film on the first substrate, a first gate electrode on the light blocking film and in contact with the light blocking film, a first semiconductor layer on the first gate electrode and overlapping the light blocking film, and a first source electrode and a first drain electrode on the first semiconductor layer. The switching transistor includes a second gate electrode on the first substrate, a second semiconductor layer on the second gate electrode and overlapping the second gate electrode, and a second source electrode and a second drain electrode on the second semiconductor layer. The first semiconductor layer and the second semiconductor layer are at a same layer of the display device, and each includes crystalline silicon germanium.
Abstract:
A display apparatus includes a display panel, sensor circuits, and a detection circuit. Each sensor circuit senses at least two external signals different from each other and outputs a sensing signal. The detection circuit receives the sensing signal to detect a position to which the external signals are applied. Each sensor circuit includes sensors commonly connected to an output terminal, a scan line which receives a scan signal, a capacitor disposed between the scan line and the output terminal, charged with a first voltage in response to the scan signal, and charged with a second voltage greater than the first voltage in response to the current signal after the scan line is floated, a switching device which outputs the sensing signal in response to the second voltage, and a readout line which applies the sensing signal output from the switching device to the detection circuit.
Abstract:
An organic light emitting display device includes a display panel and a touch screen. The display panel includes a display region that includes a light emitting region and a peripheral region surrounding the light emitting region, a pad region spaced apart from the display region, and a bending region located between the display region and the pad region. The touch screen is positioned on the display panel and includes a plurality of touch screen electrodes and an organic insulation structure. The plurality of touch screen electrodes is located in the display region. The organic insulation structure is positioned to cover the plurality of touch screen electrodes in the display region, and extends in a first direction from the display region into the bending region and the pad region.
Abstract:
Provided herein may be a display device. The display device may include a first substrate including a first substrate having a plurality of pixel areas; a second substrate having a second base substrate facing the first substrate, first to third color filters provided on the second base substrate, the first to third color filters being respectively disposed on locations corresponding to respective pixel areas of the plurality of pixel areas and embodying different colors, and an infrared sensor disposed between the plurality of pixel areas in a plan view and configured to sense infrared light; a liquid crystal layer disposed between the first substrate and the second substrate; and a backlight unit configured to provide single-color light to the liquid crystal layer. At least one of the first to third color filters may include infrared quantum dot material which converts light provided from the backlight unit into infrared light.
Abstract:
A touch panel includes a touch electrode disposed on a substrate, the touch electrode including a metal layer; a phase matching layer disposed on the metal layer; and a thin film layer disposed on the phase matching layer.