Abstract:
A method of evaluating crystallinity includes irradiating light from below a polycrystalline silicon substrate, allowing the irradiated light to pass through the polycrystalline silicon substrate and a circular polarizing plate disposed above the polycrystalline silicon substrate, measuring an intensity of light having passed through the circular polarizing plate at a location vertically above the circular polarizing plate, notifying that there is an error in a crystallinity of the polycrystalline silicon substrate when the measured intensity of the light is out of an error margin of a predetermined criterion intensity of light.
Abstract:
A display device includes: a first display unit and a second display unit respectively including a planar portion for displaying an image from a front of the display device, a curved portion extending from the planar portion and configured to display an image, and a side portion extending from the curved portion and configured to display an image from a side of the display device, the first display unit and the second display unit provided to be opposite to each other and bonded to each other at the side portion; and an adhesive layer bonding the first display unit to the second display unit.
Abstract:
A photosensitive resin composition according to an example embodiment of the present disclosure includes a quantum dot, a photopolymerizable compound, a photopolymerization initiator, an alkali-soluble resin, and a solvent, wherein the alkali-soluble resin includes at least one of a monomer represented by Formula 1 and a monomer represented by Formula 2:
Abstract:
A photosensitive resin composition according to an example embodiment of the present disclosure includes a quantum dot, a photopolymerizable compound, a photopolymerization initiator, an alkali-soluble resin, and a solvent, wherein the alkali-soluble resin includes at least one of a monomer represented by Formula 1 and a monomer represented by Formula 2:
Abstract:
A device for evaluating crystallinity includes a substrate holder configured to fix a polycrystalline silicon substrate thereon, a light source disposed below the substrate holder, a circular polarizing plate disposed above the polycrystalline silicon substrate, and a camera disposed above the circular polarizing plate and configured to capture an image transmitted through the circular polarizing plate.
Abstract:
A device and method for measuring a critical dimension of a pattern on a display substrate is disclosed. In one aspect, the device includes a region of interest (ROI) setting unit setting a region of interest in image data, determining whether the region of interest is larger than a reference region, and generating a pattern image based on the region of interest. The device also includes a design file memory storing a plurality of design patterns, a matching unit matching the pattern image to one of design patterns, and a measurement unit measuring the critical dimension of the pattern in the pattern image. The ROI setting unit selects the image data as the pattern image and outputs the pattern image to the matching unit when the region of interest is larger than the reference region.
Abstract:
A device and method for measuring a critical dimension of a pattern on a display substrate is disclosed. In one aspect, the device includes a region of interest (ROI) setting unit setting a region of interest in image data, determining whether the region of interest is larger than a reference region, and generating a pattern image based on the region of interest. The device also includes a design file memory storing a plurality of design patterns, a matching unit matching the pattern image to one of design patterns, and a measurement unit measuring the critical dimension of the pattern in the pattern image. The ROI setting unit selects the image data as the pattern image and outputs the pattern image to the matching unit when the region of interest is larger than the reference region.
Abstract:
A display device includes: a first display unit and a second display unit respectively including a planar portion for displaying an image from a front of the display device, a curved portion extending from the planar portion and configured to display an image, and a side portion extending from the curved portion and configured to display an image from a side of the display device, the first display unit and the second display unit provided to be opposite to each other and bonded to each other at the side portion; and an adhesive layer bonding the first display unit to the second display unit.
Abstract:
An exemplary embodiment provides a liquid crystal display including: a substrate; a first wire grid polarizer; a thin film transistor; a pixel electrode; a roof layer; and a plurality of microcavities. The substrate has a bottom surface and a top surface. The first wire grid polarizer is disposed on the bottom surface of the substrate. The thin film transistor is disposed on the top surface of the substrate. The pixel electrode is connected to the thin film transistor. The roof layer is disposed to face the pixel electrode. The plurality of microcavities having injection holes are formed between the pixel electrode and the roof layer, the microcavities forming a liquid crystal layer containing liquid crystal molecules.