Abstract:
A sensing circuit in a device having a moving body in which a unit to be detected including first and second pattern units spaced apart from each other is formed includes an oscillation circuit unit including first and second oscillation circuits fixedly mounted on a substrate spaced apart from the unit to be detected, including, respectively, first and second sensing coils having first and second inductance values depending on areas of overlap between the first and second sensing coils and the first and second pattern units and outputting, respectively, first and second sensed oscillation signals based on the first and second inductance values; and a sensing circuit outputting an output signal having movement information of the moving body based on each period count value for each of the first and second sensed oscillation signals using a reference oscillation signal.
Abstract:
An actuator of a camera module includes a magnet, a coil facing the magnet, a driver configured to apply a driving signal to the coil to move the magnet in a direction, and a position estimator. The position estimator is configured to convert an oscillation signal into a digital signal in a delta sigma modulation scheme, and estimate the position of the magnet from the digital signal. A frequency of the oscillation signal varies based on a position of the magnet.
Abstract:
A moving object sensing control circuit includes: a control circuit configured to determine, based on a mode signal, whether to operate in a sensing mode or a power saving mode, and control, in the power saving mode, a sensing operation in a sensing stage and a standby operation in a standby stage; an LC oscillation circuit configured to generate an oscillation signal based on an impedance value corresponding to relocation of a moving object, by performing the sensing operation or the standby operation in response to control of the control circuit; and a sensing circuit configured to obtain a period count value of the sensing oscillation signal using a reference oscillation signal and a main oscillation signal, and output an output signal having movement information of the moving object based on the period count value, by performing the sensing operation in response to the control of the control circuit.
Abstract:
A sensing circuit in a device having a moving body in which a unit to be detected including first and second pattern units spaced apart from each other is formed includes an oscillation circuit unit including first and second oscillation circuits fixedly mounted on a substrate spaced apart from the unit to be detected, including, respectively, first and second sensing coils having first and second inductance values depending on areas of overlap between the first and second sensing coils and the first and second pattern units and outputting, respectively, first and second sensed oscillation signals based on the first and second inductance values; and a sensing circuit outputting an output signal having movement information of the moving body based on each period count value for each of the first and second sensed oscillation signals using a reference oscillation signal.
Abstract:
A camera module actuator includes, a magnet, a coil, a driver, and a position estimating processor. The coil is disposed to face the magnet. The driver is configured to move the magnet by applying a driving signal to the coil. The position estimating processor is configured to estimate a position of the magnet from an oscillating signal. A frequency of the oscillating signal varies according to a movement of the magnet.
Abstract:
A wireless power transmitter includes an amplifier configured to amplify a power; a transmitter configured to resonate the power amplified by the amplifier; and a reference signal provider configured to provide a reference signal to the amplifier and change a frequency of the reference signal.
Abstract:
Provided are a display driving apparatus for updating information displayed on a display of an electronic device, an electronic device including the same, and a method for driving the display using the same. A display driving apparatus includes a driving controller configured to receive promotion setting information from a device controller of an electronic device and drive the display according to the received promotion setting information independently of the device controller.
Abstract:
A rotation sensing apparatus includes a detected part, a sensor unit, and a rotation information calculation circuit. The sensor unit includes a first sensor disposed opposite to a first pattern portion, a second sensor disposed opposite to a second pattern portion, a third sensor disposed to be spaced apart from the first sensor in the rotation direction and opposite to the first pattern portion, and a fourth sensor disposed to be spaced apart from the second sensor in the rotation direction and opposite to the second pattern portion. The rotation information calculation circuit is configured to sense the rotation direction, in response to a differential signal, generated based on the first oscillation signal and the second oscillation signal, and an oscillation signal corresponding to maximum and minimum frequencies, from among the first oscillation signal, the second oscillation signal, the third oscillation signal, and the fourth oscillation signal.
Abstract:
A controller IC of a touch sensing apparatus includes an oscillation circuit including a capacitor connected to a sensing coil, a digital converter configured to count an oscillation signal output from the oscillation circuit and to output a count value, and a contact detector configured to calculate variations in the count value during delay times, and to detect a contact strength of an object according to the variations.
Abstract:
An apparatus for sensing a rotating body includes a unit to be detected, including a first pattern portion having at least one first pattern and a second pattern portion having at least one second pattern, and configured to rotate around a rotating shaft, a sensor module comprising a first sensor disposed opposite to the first pattern portion and a second sensor disposed opposite to the second pattern portion, and a rotation information calculator configured to calculate a difference value by differentiating output signals of the first sensor and the second sensor, and to compare comparison values, determined according to a target sensing angle and a size of the first pattern and the second pattern, with the difference value.