Abstract:
A multilayer capacitor includes a body having a plurality of dielectric layers and first and second internal electrodes alternately disposed with the dielectric layers interposed therebetween, and further including an active region in which the first and second internal electrodes overlap each other, and upper and lower covers disposed above and below the active region, respectively; and first and second external electrodes disposed on the body to be connected to the first and second internal electrodes, respectively, wherein the upper and lower covers include barium titanate (BT, BaTiO3) and Yttria-stabilized zirconia (YSZ).
Abstract:
A method of manufacturing a multilayer ceramic capacitor includes stacking dielectric sheets on which internal electrode patterns are printed, to form a multilayer body, forming additional dielectric sheets on portions of opposite side surfaces of the multilayer body, and sintering the multilayer body to form a ceramic body in which internal electrodes are disposed. Here, the additional dielectric sheets form attachment parts on the opposite side surfaces of the ceramic body by the sintering of the multilayer body.
Abstract:
A dielectric ceramic composition includes: a base material powder BamTiO3 (0.995≦m≦1.010); 0.2 to 2.0 moles of a first accessory ingredient, an oxide or carbide containing at least one of Ba and Ca, based on 100 moles of the base material powder; a second accessory ingredient, an oxide containing Si or a glass compound containing Si; 0.2 to 1.5 moles of a third accessory ingredient, an oxide containing at least one of Sc, Y, La, Ac, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, based on 100 moles of the base material powder; and 0.05 to 0.80 mole of a fourth accessory ingredient, an oxide containing at least one of Cr, Mo, W, Mn, Fe, Co, and Ni, based on 100 moles of the base material powder, a content ratio of the first accessory ingredient to the second accessory ingredient being 0.5 to 1.7.
Abstract:
There are provided a dielectric composition and a multilayer ceramic electronic component using the same, the dielectric composition including dielectric grains having a perovskite structure represented by ABO3, wherein the dielectric grain includes a base material, in which at least one rare earth element RE is solid-solubilized in at least one of A and B, and a transition element TR, and a ratio (TR/RE) of the transition element to the rare earth element is 0.2 to 0.8.
Abstract:
There is provided a dielectric composition, including; a base powder including BamTiO3 (0.995≦m≦1.010); a first sub-component including 0.05 to 4.00 moles of an oxide or carbonate containing at least one rare-earth element based on 100 moles of the base powder; a second sub-component including 0.05 to 0.70 moles of an oxide or carbonate containing at least one transition metal; a third sub-component including 0.20 to 2.00 moles of a Si oxide; a fourth sub-component including 0.02 to 1.00 mole of an Al oxide; and a fifth sub-component including 20 to 140% of an oxide containing at least one of Ba and Ca, based on the third sub-component.