Abstract:
A multilayer ceramic capacitor (MLCC) includes a body including first dielectric layers and second dielectric layers, the body including first to sixth surfaces, a second surface, a third surface, a fourth surface, a fifth surface and a sixth surface; first internal electrodes disposed on the first dielectric layers, exposed to the third surface, the fifth surface, and the sixth surface, and spaced apart from the fourth surface by first spaces; second internal electrodes disposed on the second dielectric layers to oppose the first internal electrodes with the first dielectric layers or the second dielectric layers interposed therebetween, exposed to the fourth surface, the fifth surface, and the sixth surface, and spaced apart from the third surface by second spaces; first dielectric patterns disposed in at least a portion of the first spaces, and second dielectric patterns disposed in at least a portion of the second spaces; and lateral insulating layers.
Abstract:
A multilayer ceramic capacitor (MLCC) includes a body including first dielectric layers and second dielectric layers, the body including first to sixth surfaces, a second surface, a third surface, a fourth surface, a fifth surface and a sixth surface; first internal electrodes disposed on the first dielectric layers, exposed to the third surface, the fifth surface, and the sixth surface, and spaced apart from the fourth surface by first spaces; second internal electrodes disposed on the second dielectric layers to oppose the first internal electrodes with the first dielectric layers or the second dielectric layers interposed therebetween, exposed to the fourth surface, the fifth surface, and the sixth surface, and spaced apart from the third surface by second spaces; first dielectric patterns disposed in at least a portion of the first spaces, and second dielectric patterns disposed in at least a portion of the second spaces; and lateral insulating layers.
Abstract:
A multilayer ceramic capacitor (MLCC) includes a body including first dielectric layers and second dielectric layers, the body including first to sixth surfaces, a second surface, a third surface, a fourth surface, a fifth surface and a sixth surface; first internal electrodes disposed on the first dielectric layers, exposed to the third surface, the fifth surface, and the sixth surface, and spaced apart from the fourth surface by first spaces; second internal electrodes disposed on the second dielectric layers to oppose the first internal electrodes with the first dielectric layers or the second dielectric layers interposed therebetween, exposed to the fourth surface, the fifth surface, and the sixth surface, and spaced apart from the third surface by second spaces; first dielectric patterns disposed in at least a portion of the first spaces, and second dielectric patterns disposed in at least a portion of the second spaces; and lateral insulating layers.
Abstract:
A dielectric ceramic composition includes: a base material powder BamTiO3 (0.995≦m≦1.010); 0.2 to 2.0 moles of a first accessory ingredient, an oxide or carbide containing at least one of Ba and Ca, based on 100 moles of the base material powder; a second accessory ingredient, an oxide containing Si or a glass compound containing Si; 0.2 to 1.5 moles of a third accessory ingredient, an oxide containing at least one of Sc, Y, La, Ac, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, based on 100 moles of the base material powder; and 0.05 to 0.80 mole of a fourth accessory ingredient, an oxide containing at least one of Cr, Mo, W, Mn, Fe, Co, and Ni, based on 100 moles of the base material powder, a content ratio of the first accessory ingredient to the second accessory ingredient being 0.5 to 1.7.
Abstract:
A multilayer ceramic electronic component includes a hexahedral ceramic body including dielectric layers and having first and second main surfaces opposing each other in a thickness direction, first and second end surfaces opposing each other in a length direction, and first and second side surfaces opposing each other in a width direction; first and second internal electrodes stacked to have the dielectric layer interposed therebetween within the ceramic body and alternately exposed through the first and second end surfaces; and first and second external electrodes electrically connected to the first and second internal electrodes, respectively, and including first and second head parts formed on the first and second end surfaces, wherein width of the first and second head parts is less than width of the ceramic body, and when length, width and thickness of the ceramic body are defined as L, W, and T, respectively, T/W>1.0 is satisfied.
Abstract:
There are provided a dielectric composition and a multilayer ceramic electronic component using the same, the dielectric composition including dielectric grains having a perovskite structure represented by ABO3, wherein the dielectric grain includes a base material, in which at least one rare earth element RE is solid-solubilized in at least one of A and B, and a transition element TR, and a ratio (TR/RE) of the transition element to the rare earth element is 0.2 to 0.8.
Abstract:
There is provided a multilayer ceramic electronic component including a lamination main body including a plurality of inner electrodes. When T1 represents a distance between vertically adjacent inner electrodes in a central portion of the lamination main body, and T2 represents a distance between vertically adjacent inner electrodes at an edges of the inner electrodes in a widthwise direction, a ratio (T2/T1) of T2 to T1 is 0.80 to 0.95.