Abstract:
There is provided a multilayered ceramic capacitor, including: a ceramic body; an active layer including a plurality of first and second internal electrodes; an upper cover layer; a lower cover layer formed below the active layer, the lower cover layer being thicker than the upper cover layer; first and second external electrodes; at least one pair of first and second internal electrodes repeatedly formed inside the lower cover layer, wherein, when A is defined as ½ of an overall thickness of the ceramic body, B is defined as a thickness of the lower cover layer, C is defined as ½ of an overall thickness of the active layer, and D is defined as a thickness of the upper cover layer, a ratio of deviation between a center of the active layer and a center of the ceramic body, (B+C)/A, satisfies 1.063≤(B+C)/A≤1.745.
Abstract:
A coil component includes a support member, an internal coil supported by the support member, and external electrodes connected to the internal coil. The external electrodes may each include a first layer coming into contact with the internal coil and a second layer disposed on a surface of the first layer. The first layer may serve as a buffer layer for improving a contact property between the internal coil and the external electrode. The second layer may be disposed to come into at least partial contact with a first end portion of the support member and a second end portion of the support member.
Abstract:
A multilayer ceramic capacitor may include: three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from one another. When a thickness of an active layer including a plurality of first and second internal electrodes disposed therein is defined as AT, and a gap between a first or second lead part of the first internal electrode and a third lead part of the second internal electrode is defined as LG, the following Equation may be satisfied: 0.00044≤LG*log [1/AT]≤0.00150.
Abstract:
A multilayer ceramic capacitor may include: three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from one another. When a thickness of an active layer including a plurality of first and second internal electrodes disposed therein is defined as AT, and a gap between a first or second lead part of the first internal electrode and a third lead part of the second internal electrode is defined as LG, the following Equation may be satisfied: 0.00044≤LG*log [1/AT]≤0.00150.
Abstract:
There is provided a multilayer ceramic electronic component, including: a ceramic body having external electrodes; and internal electrodes disposed between ceramic layers within the ceramic body, the ceramic body having a width smaller than a length thereof and the number of laminated internal electrodes being 250 or more, wherein when the thickness of the ceramic layer is denoted by Td and the thickness of the internal electrode is denoted by Te, 0.5≦Te/Td≦2.0, and when the thickness of a central portion of the ceramic body is denoted by Tm and the thickness of each of side portions of the ceramic body is denoted by Ta, 0.9≦Ta/Tm≦0.97, and thus, a multilayer ceramic electronic component having low equivalent series inductance (ESL) may be obtained.
Abstract:
A multilayer ceramic electronic component includes: a board including first and second contact terminals disposed on one surface thereof to be spaced apart from each other and first and second external terminals disposed on the other surface thereof to be spaced apart from each other; a multilayer ceramic capacitor including first and second external electrodes including first and second connection portions disposed on opposite end surfaces of a ceramic body and first and second band portions extending from the first and second connection portions to portions of one surface of the ceramic body and connected to the first and second contact terminals, respectively; a sealing part enclosing the multilayer ceramic capacitor on the board while exposing one ends of the first and second contact terminals; and first and second connection terminals connecting the ends of the first and second contact terminals to the first and second external terminals, respectively.
Abstract:
A multilayer ceramic capacitor may include: a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other; an active layer configured to form capacitance by including first and second internal electrodes disposed to face each other with the dielectric layer interposed therebetween and alternately exposed to the first or second side surface; and a first external electrode disposed on the first side surface and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes. When length of the ceramic body is L and length of the first and second external electrodes in the length direction of the ceramic body is L1, 0.2≦L1/L≦0.96 is satisfied.
Abstract:
A multilayer electronic component includes: a body including one or more ceramic layers or magnetic layers; an inductor part including coil portions disposed in the body to be perpendicular to a lower surface of the body; a plurality of internal electrodes disposed in the body to be perpendicular to the lower surface of the body; and an input terminal, an output terminal, and a ground terminal disposed on the lower surface of the body, wherein the body includes a capacitor part comprising at least one among the plurality of internal electrodes and at least one among the coil portions with at least one of the ceramic layers or magnetic layers interposed therebetween.
Abstract:
A multilayer ceramic capacitor includes: a ceramic body; first and second internal electrodes disposed so as to be alternately exposed to both end surfaces of the ceramic body with each of dielectric layers; first and second external electrodes formed so as to be extended onto portions of one main surface of the ceramic body, respectively; third and fourth external electrodes formed on both side surfaces of the ceramic body, respectively, so as to be extended onto portions of both main surfaces of the ceramic body, respectively; an intermitting part connecting the third and fourth external electrodes to one another; first and second land patterns formed so as to be connected to the first and third external electrodes, respectively; and a third land pattern formed so as to be connected to both of the second and fourth external electrodes.
Abstract:
A multilayer ceramic capacitor may include: a ceramic body; first and second external electrodes disposed on a mounting surface of the ceramic body; third and fourth external electrodes disposed on a surface of the ceramic body opposing the mounting surface; a first active layer including first and second internal electrodes alternately exposed through the mounting surface of the ceramic body and the surface of the ceramic body opposing the mounting surface and connected to the first and third external electrodes, respectively; a second active layer including third and fourth internal electrodes alternately exposed through the mounting surface of the ceramic body and the surface of the ceramic body opposing the mounting surface and connected to the second and fourth external electrodes, respectively; and an intermittent part disposed on the surface of the ceramic body opposing the mounting surface and connecting the third and fourth external electrodes to each other.