摘要:
Provided is an alumina composite ceramic composition which has electrical insulation properties as well as better mechanical strength and thermal conductivity than a typical alumina-based material. Thus, the alumina composite ceramic composition is promising for a material of a substrate or an insulating package of an electronic device. The alumina composite ceramic composition of the present invention may include alumina (Al2O3), zirconia (ZrO2) or yttria-stabilized zirconia as a first additive, and graphene oxide and carbon nanotubes, as a second additive. In this case, in consideration of two aspects of sinterability and electrical resistivity characteristics of the alumina composite ceramic composition, the graphene oxide may be appropriately adjusted to be in the form of a graphene oxide phase and a reduced graphene phase which coexist in the alumina composite ceramic composition.
摘要:
A superabrasive compact and a method of making the superabrasive compact are disclosed. A superabrasive compact may comprise a superabrasive volume and a substrate. The substrate may be attached to the superabrasive volume via an interface. The superabrasive volume may be formed by a plurality of polycrystalline superabrasive particles. The superabrasive particles may have nano or sub-micron scale surface texture.
摘要:
A composition having nanoparticles of a refractory-metal carbide or refractory-metal nitride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles with an organic compound having a char yield of at least 60% by weight to form a precursor mixture.
摘要:
A new method and apparatus is applied to manufacture boehmite and sol gel abrasive grain with greatly reduced raw material cost. The raw material starts from alumina trihydrate, which is transferred to highly dispersible alumina monohydrate under hydrothermal treatment in an agitated zirconium-steel or titanium-steel cladding plate high pressure reactor. Then the highly dispersed and deionized sol is converted to sintered high-density microcrystalline ceramic abrasive grain by sol-gel process.
摘要:
A method for producing a ceramic scintillator comprising the steps of mixing a rare earth compound with sulfuric acid and/or sulfate to cause their reaction to obtain a product; calcining the product to obtain calcined powder; reducing the calcined powder to obtain rare earth oxysulfide powder; molding the rare earth oxysulfide powder to obtain a green body; and sintering the green body; a pulverization step being conducted to adjust the particle sizes of the product and/or the calcined powder at least before the reduction step.
摘要:
A production method of rare earth oxysulfide comprising a step of mixing a rare earth compound with sulfuric acid and/or sulfate in such a proportion that sulfate ions are 0.75-1.75 mol to 1 mol of a rare earth element, thereby preparing a reaction solution to obtain a product; a step of calcining the product to obtain calcined powder; and a step of reducing the calcined powder to obtain rare earth oxysulfide.
摘要:
Aluminum nitride crystal particles, aluminum nitride powders containing the same, production processes for both of them, an organic polymer composition comprising the aluminum nitride crystal particles and a sintered body.Each of the aluminum nitride crystal particles has a flat octahedral shape in a direction where hexagonal faces are opposed to each other, which is composed of two opposed hexagonal faces and 6 rectangular faces, in which the average distance “D” between two opposed corners of each of the hexagonal faces is 3 to 110 μm, the length “L” of the short side of each of the rectangular faces is 2 to 45 μm, and L/D is 0.05 to 0.8; each of the hexagonal faces and each of the rectangular faces cross each other to form a curve without forming a single ridge; and the true destiny is 3.20 to 3.26 g/cm3.
摘要翻译:氮化铝结晶粒子,含有它们的氮化铝粉末,二者的制造方法,包含氮化铝结晶粒子的有机聚合物组合物和烧结体。 每个氮化铝晶体颗粒在六边形彼此相对的方向上具有平坦的八面体形状,其由两个相对的六边形面和六个矩形面构成,其中两个相对的角之间的平均距离“D” 每个六边形面为3〜110μm,每个矩形面的短边的长度“L”为2〜45μm,L / D为0.05〜0.8; 每个六边形面和每个矩形面彼此交叉以形成曲线而不形成单个脊; 真正的命运是3.20〜3.26 g / cm3。
摘要:
[Problems]To provide a spherical aluminum nitride powder that features high thermal conductivity and filling property, and that is useful as a filler for a heat radiating material, and a method of producing the same.[Means for Solution]A spherical aluminum nitride powder comprising aluminum nitride particles having an average particle diameter of 3 to 30 μm, a sphericalness of not less than 0.75, and an oxygen content of not more than 1% by weight wherein, when the average particle diameter is d (μm), the specific surface area S (m2/g) satisfies the following formula (1), (1.84/d)≦S≦(1.84/d+0.5) (1).
摘要:
A composition having nanoparticles of a refractory-metal carbide or refractory-metal nitride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles with an organic compound having a char yield of at least 60% by weight to form a precursor mixture.
摘要:
The invention provides for an ultra hard or hard composite material comprising a primary ultra hard or hard particulate material and at least one secondary ultra hard or hard particulate material dispersed in a matrix material. The primary ultra hard or hard particulate material has a thermal expansion coefficient lower than that of the matrix material and the at least one secondary ultra hard or hard particulate material has a thermal expansion coefficient greater than that of the matrix material.